
Energy-efficient Automated Vertical Farms

This preprint is available at https://santini.in/

A final version of this preprint is published as follows:

Author 1: Maxence Delorme

Author 2: Alberto Santini

Journal: Omega (vol. 109) (2022).

The final version is available at:
https://www.sciencedirect.com/science/article/pii/S0305048322000202

You can cite the final version of this paper as:

@article{Delorme2022,
title={Energy-efficient Automated Vertical Farms},
journal={Omega},
author={Delorme, Maxence and Santini, Alberto},
volume={109},
doi={10.1016/j.omega.2022.102611},
year={2022}

}

https://santini.in/
https://www.sciencedirect.com/science/article/pii/S0305048322000202

Energy-efficient Automated Vertical Farms

Maxence Delorme1 and Alberto Santini2

1Department of Econometrics & Operations Research, Tilburg University, the Netherlands
2Department of Economics & Business, Universitat Pompeu Fabra, Spain; ESSEC Business

School, France; Institute for Advanced Studies, Paris Cergy Université, France

February 8, 2022

Abstract

Autonomous vertical farms (VFs) are becoming increasingly more popular because they allow
to grow food minimising water consumption and the use of pesticides, while greatly increasing the
yield per square metre compared with traditional agriculture. To meet sustainability goals, how-
ever, VFs must operate at maximum efficiency; it would be otherwise impossible to compete with
the energy source powering plant growth in traditional agriculture: the sun. We introduce the Ver-
tical Farming Elevator Energy Minimisation Problem (VFEEMP), which arises when minimising
the energy consumption of automatic elevators servicing VFs. We prove that the decision problem
associated with the VFEEMP is NP-complete. To solve the problem, we propose three Mixed-
Integer Linear Programming (MIP) formulations together with valid inequalities, and a Constraint
Programming model. We present a large set of instances, both synthetic and derived from real-life
data, and we determine through extensive computational experiments which instance characteris-
tics have an impact on the difficulty of the problem and which formulations are the most suitable
to solve the VFEEMP.

Keywords: vertical farming, task scheduling, operational research applications, integer linear
programming, constraint programming.

1 Introduction
Access to high-quality food produced sustainably is a pressing problem in both developed and
developing countries. Standard agricultural practices are not well-suited to scale for a world with a
larger and increasingly urbanised population, less available water, and climate change [8]. Simply
increasing the amount of land dedicated to agriculture is not a compelling long-term option because
of the associated side-effects: deforestation, soil depletion, the need to use pesticides and fertilisers,
emissions due to transport between the place of production and that of consumption, etc. Moreover,
standard agriculture provides low yields in terms of the amount of nutrients produced per square
meter of land used [4]. To mitigate the effects that the forecast increase of food demand will have
on urban and rural communities, significant efforts are devoted to devise alternative agricultural
practices. Among the main objectives pursued is to increase the yield per square meter and reduce
externalities on the environment, while staying economically competitive [3].

Vertical Farming (VF), an agricultural technique which is gaining increasing traction, is estab-
lishing itself as an invaluable tool to meet the above objectives. VF consists of growing crops in
stacked layers hosted in indoor support structures. The hosting infrastructure provides the plants
with everything they need to grow in optimal conditions: the right amount of light and water,
ventilation and appropriate CO2 levels, nutrients, protection from pests, controlled temperatures.
Such infrastructures vary considerably in terms of complexity, level of control they offer over the
growth environment, and size [13, 12].

All types of structures, irrespective of their size or level of sophistication, provide some basic
advantages compared to traditional farming: they protect the plants from weather and climate
variability; they shelter them from parasites and pathogen; they allow to control the water and soil
to ensure it is not affected by the presence of heavy metals or other dangerous substances; they
can be employed everywhere, thus bringing production closer to consumption and reducing trans-
portation costs and emissions. For example, supermarkets, restaurants and hotels are increasingly

1

adopting VF cabinets, approximately as large as standard refrigerators, to grow in-house herbs,
leafy vegetables and berries. However, for VF to make a considerable impact towards achieving a
more sustainable food supply chain and to be economically viable, operators strive to operate at
larger scales [4]. Structures of the size of silos or re-purposed city buildings are more appropriate to
host crops central to human diets, such as staple foods, vegetables and fruits [7, 2]. Although the
technology which would allow such very large-scale projects to operate is not yet fully developed,
interesting concepts are starting to emerge. For example, 6-to-12-metre tall “growth towers” in
which plants grow under completely controlled conditions and with minimal human interaction [9]
are available on the market. In such towers, each tray hosting a crop receives light, water, nutrients
and ventilation from a computer-controlled Internet-of-Things system. Trays are moved around,
irrigated, and inspected via automatic elevators equipped with water hoses and cameras. A human
operator is needed to bring a new tray to the elevator’s loading bay, and to collect it at the end of
its growth period.

These large-scale systems allow a lower energetic footprint. For example, they are large enough
to be equipped with solar panels for electricity production and contain enough air that water can be
harvested from condensed humidity. In other respects, however, VF is still more energy-consuming
than traditional farming. First, it uses artificial light to provide crops with an optimal amount
of lighting and faster growth times. Although new technology such as LED lighting consumes
significantly less energy compared to systems from just 5 years ago, it is clearly not as efficient
as using sunlight. Second, for large-scale systems such as the growth towers described above, the
automated elevators which serve the tower use a significant portion of the energy required by the
structure.

The objective of this paper is to develop mathematical models and decision support tools to
lower the energy consumption of the automatic elevators servicing large-scale VF structures. To
do so, in the rest of this section, we give a precise description of the problem. Section 3 presents
existing literature on the optimisation of vertical farms and on other related problems. We formalise
our problem and prove its NP-completeness in Section 4. In Section 5 we present three MIP
formulations and a number of valid inequalities aimed at strengthening their linear relaxations,
and we also present a formulation based on Constraint Programming (CP). After describing in
Section 6 the instance sets we use, we present the results of a large set of computational experiments
in Section 7. We conclude and point out future research directions in Section 8.

The main contributions of this paper are the following:
• We introduce a problem arising from the operation of autonomous vertical farms, which has

timely applications in a rapidly growing industry.
• We prove that the problem is NP-complete by reduction from the well-known SubsetSum

problem.
• We present three MIP formulations and strengthen them with valid inequalities and variable

fixing techniques, as well as a CP formulation.
• We generate and publish a large set of instances, both synthetic and derived from real-life

data. We also determine which instance characteristics have an impact on the difficulty of
the problem.

• We identify the best-performing formulation and set of valid inequalities. We also make public
the source code of all our solvers.

2 Problem description
A VF tower is composed of stacked shelves in which a planner places trays containing crops. Each
tray will spend some time in this system until the crops it contains are ready to be harvested. Each
shelf can host one tray at a time and, after a tray leaves a shelf, another one can take its place.
Trays become available from a “depot” at the bottom, spend the required amount of time on a
shelf and, at the end of the crop’s growth period, return to the depot. In an automatic vertical
farm, an elevator moves the trays between the depot and the shelves. Figure 1 gives a schematic
representation of a stack with five shelves (plus the depot) served by an elevator. A human operator
brings a seeded tray to the depot so that the elevator can place it into a shelf. At the end of the
growth cycle of the crop, the elevator brings the tray down and the operator picks it up from the
depot and moves it into an area where the crop will be harvested.

The elevator also serves the trays performing activities such as watering and monitoring. For
example, it can take pictures that a computer vision algorithm processes to ensure crops are growing
well and are not affected by pests. Each tray has an associated list of tasks, and each task requires
that the elevator travels to the corresponding shelf and spends some time there.

2

depot

shelf 1

shelf 2

shelf 3

shelf 4

shelf 5

elevator

Figure 1: Schematic representation of a shelf tower with five shelves plus the depot, serve by an elevator.

Each tray has a start time window during which it must be picked up at the depot to be placed
on its assigned shelf. We define the time at which the elevator picks up the tray to bring it to its
shelf as the tray’s start time. There are also time windows related to each task and to the final
pick up of the tray, but these are relative to the tray’s start time. For example, if a tray has a
start time window of one day (from hour 0 to 24), it can be brought to its shelf at hour 12. Then,
if it must be watered after 6–8 hours from the growth start, this would translate into a task time
window spanning from hour 18 to hour 20.

A computer system is in charge of deciding in which order the tasks should be completed,
and correspondingly moving the elevator to perform each task. The objective of the system is to
minimise the energy consumption of the elevator, making sure that all tasks are performed within
their time windows. The elevator uses energy to travel between shelves. Therefore, the energy
minimisation objective translates into the minimisation of the distance travelled by the elevator.

In the problem considered in this paper, another subsystem in the control software of the tower
has already taken care of assigning each tray to the shelf it will occupy (see Section 8 for possible
extensions). The elevator must then transport each tray to and from its assigned shelf, and visit the
trays to perform the given list of tasks. The elevator can carry out tasks associated with different
trays in any order, as long as the time windows are respected. On the other hand, tasks associated
with the same tray must be carried out in the given order.

The objective of the problem is to determine a sequence of operations which minimises the
travel distance of the elevator. Because the travel time of the elevator (a few seconds) is negligible
compared to the time it must spend at the shelves to perform the tasks (several minutes), we can
disregard it when timing the operations.

3 Literature review
There is a limited but growing amount of literature on the topic of the optimisation of VF. Two of
the earliest works, by Yang, Hari, and Kuo [20] and Bennell, Martinez, and Potts [5], respectively,
are only available as short abstracts in conference proceedings.

Yang, Hari, and Kuo [20] study the problem of selecting and scheduling a mix of crops to
grow in a VF system at a tactical level. The objective is to maximise profits, taking into account
that the price of each crop fluctuates during the year. The fluctuation is due to the possibility
of growing some of the crops using open-air agriculture, which is highly seasonal. Therefore, it is
more profitable to harvest a crop in the VF system during the period of the year when it is not
available using open-air agriculture. The author proposes a small case study with a 2-year time
horizon and 13 possible crops, which is solved using a MIP.

The problem of meeting as much demand as possible using crops grown in a VF cabinet was
studied by Bennell, Martinez, and Potts [5]. The authors consider a stack of shelves similar to the
one presented in Figure 1, although smaller in scale: their proposed use-case is a cabinet placed

3

directly at the consumer site (e.g., at a restaurant or a supermarket). In their settings, the capacity
of each shelf and the growth speed of each crop are determined by a set of growth conditions, which
the operator can change. For example, each crop can grow on a different growth medium, receive
more or less light, water, etc. Using these factors to influence the length of the growth cycles,
Bennell, Martinez, and Potts minimise the amount of unmet demand, weighted by crop prices.
The authors propose a heuristic rolling-horizon algorithm.

Yang, Huang, and Ang [21] expand on [20], considering again the problem of selecting and
scheduling crop growth in a VF system. The authors consider a setting in which crops receive
sunlight (as opposed to artificial light) and the amount of light depends on the shelf’s position
and on whether the system operator installs rooftop solar panels, which obstruct the glass ceiling.
Similar to [20], the authors aim at maximising the profit considering the seasonal variability of crop
prices. Additionally, they introduce crop adjacency considerations, which make it more desirable
for crops of the same family to grow on adjacent shelves. The MIP formulation proposed by the
authors is not able to scale to realistically sized instances and, therefore, they implement a greedy
heuristic which provides solutions for time horizons of up to 50 months.

Recently, Santini et al. [17] considered the problem of planning the production of crops on VF
cabinets. The authors consider a system in which crops grow under controlled conditions (soil,
water, light, CO2 levels, etc.), which can change day-by-day and on a shelf-by-shelf level. They
propose four objective functions which a planner might want to minimise: the amount of unmet
demand (if it is not possible to satisfy the entire demand with the available infrastructure), the
number of tray movements (trays are allowed to move from a shelf to another one during their
growth), the number of shelf reconfigurations (i.e., the number of times the operator changes
growth conditions for a shelf), and the number of shelves used. They prove that the problem is
NP-complete and provide MIP models for the four versions. The models are tested on instances
with up to 6 crops, 12 shelves, and a time horizon of 100 days. Their results show that the choice
of the objective function heavily influences both the computational performance of the models and
the characteristics of the solution, hinting that a multi-objective approach could be useful to build
a real-world decision support system.

In another recent paper, Cetegen and Stuber [6] present a robust optimisation model to design
a VF system and schedule crop growth. The authors aim at building a portfolio of crops to grow,
to minimise the risk of economic loss. Because controlled-environment agricultural techniques such
as VF virtually eliminate risks on the grower’s side (bad weather, pests, etc.) the authors consider
risks coming from the market’s side, i.e., demand and price variability. Using a cutting-plane
method to solve a semi-infinite programme with semi-infinite constraints, the authors apply their
algorithm to two case studies, validating the economic viability of using VF to grow crops such as
lettuce, spinach, tomatoes, strawberries and mushrooms.

We also highlight a recent Master’s thesis [1], which deals with task scheduling in a semi-
automatic VF plant factory. The objective considered is the minimisation of the makespan of
tasks to be performed by sensors and actuators on the crop trays growing in the VF system. This
objective allows the authors to model the problem as a Flexible Job-Shop Scheduling Problem and
use a variant of the Genetic Algorithm by Pezzella, Morganti, and Ciaschetti [14] to solve it.

In the broader context of reducing the environmental footprint of industrial production processes,
we place our work within a growing number of papers which explicitly consider sustainability and
energy efficiency when optimising production planning. For example, Wu and Che [19] propose a
bi-objective flow-shop scheduling problem in which the two objectives are the minimisation of the
total make-span, and the minimisation of energy consumption. Qiu, Qiao, and Pardalos [15] present
a production routing problem in which excessive carbon emissions are penalised in the objective
function, while reduced emissions yield a prize.

Finally, we remark that our problem has a superficial similarity with the Travelling Salesman
Problem with Time Windows (TSPTW): if the task time windows were absolute rather than relative
to the planting time, our problem could be seen as an extension of a 1-dimensional TSPTW. The
current literature, however, does not present any work neither on routing problems in which the
time window of a customer is relative to the visit time of another customer, nor on 1-dimensional
special cases of routing problems with time windows.

4 Problem formalisation
Consider a tower with n shelves, making up set S = {1, . . . , n}. We denote the bottom depot as 0
and the set of all shelves plus the depot as S′ = {0}∪S. During the planning horizon, m trays will
be placed on the shelves; we denote them as T = {1, . . . ,m}. The time horizon itself is discretised

4

in time intervals and denoted as Ω = {1, . . . , ω}.
Each tray t ∈ T has a start time window

[
¯
w0

t , w̄
0
t

]
(with

¯
w0

t , w̄
0
t ∈ Ω and

¯
w0

t ≤ w̄0
t) during which

it must be picked up at the depot. The elevator must stay at the depot for d0t ≥ 1 additional time
units when picking up the tray, to allow loading operations. The start time window is absolute.
Conversely, the other time windows introduced below will be relative to the time in which the
elevator reached the depot to pick up the tray. Furthermore, there is a list of lt tasks which the
elevator must perform on tray t; the set of these tasks is denoted as Jt = {1, . . . , lt}. Each task
j ∈ Jt has an associated (relative) time window

[
¯
wj

t , w̄
j
t

]
during which the elevator must start the

task, and a duration djt ≥ 1 during which the elevator cannot move away from the shelf containing
t. Finally, we denote with

[
¯
wlt+1

t , w̄lt+1
t

]
the (relative) time window during which the elevator must

pick up tray t and bring it back to the depot, and with dl1+1
t ≥ 1 the additional time the elevator

must spend at the depot after bringing the tray, to allow unloading operations. We define the set
of extended tasks as J ′

t = {0} ∪ Jt ∪ {lt + 1}.
We allow time windows to overlap for a given tray, i.e., it could happen that w̄j

t+djt ≥ ¯
wj+1

t , ∀j ∈
{1, . . . , lt}. However, to ensure the proper growth of the crops, we require tasks to be executed in
their given order, i.e., for a given tray, a task j + 1 cannot be performed before task j.

It is also possible that the allowed “shelf life” of a tray (i.e., the moments in which it is allowed
to be present on its assigned shelf) can overlap with that of another tray assigned to the same shelf.
In other words, given two trays t1, t2 such that both are assigned to the same shelf, it can happen
that

w̄0
t1 + w̄

lt1+1
t1 ≥

¯
w0

t2 . (1)

However, the two intervals [w̄0
t1 , ¯

w0
t1 + ¯

w
lt1+1
t1] and [w̄0

t2 , ¯
w0

t2 + ¯
w

lt2+1
t2] (if non-empty) cannot overlap,

as they represent the time instants in which the trays are required to be on the shelf and two trays
cannot occupy the same shelf at the same time.

Because all shelves are equally spaced in the silo, the distance travelled by the elevator when
moving from a shelf s1 ∈ S′ to another shelf s2 ∈ S′ can be easily expressed as cs1,s2 = cs2,s1 =
|s1 − s2|. We also denote the shelf assigned to a tray t ∈ T as s(t) ∈ S.

We define the Vertical Farming Elevator Energy Minimisation Problem (VFEEMP) as the
problem of deciding in which order to perform the tasks, to minimise the distance travelled by the
elevator. Differently from any other problem we are aware of, most time windows are relative and
depend on other decisions taken by the planner, namely the start time of the planting task. Because
of this distinguishing feature, the VFEEMP seems to be neither a special case nor a generalisation of
other known optimisation problems and, thus, a first interesting question regards its computational
complexity. Theorem 1 answers this question, proving that the decision version of the VFEEMP
is NP-complete.
Theorem 1. Let VFEEMP-Decision be the decision problem which asks whether there is a
solution to the VFEEMP of cost at most x, for a given x ∈ R+

0 . Then VFEEMP-Decision is
NP-complete.

Proof. We prove the theorem by proving a stronger statement: that determining whether VFEEMP
is feasible is itself NP-complete. This clearly implies that VFEEMP-Decision is NP-complete.

Consider an instance of the NP-complete SubsetSum problem: given a set of n positive integers
B = {b1, . . . , bn} and a positive integer c, the problem asks to determine whether there is a subset
S ⊆ B such that

∑
b∈S b = c. We show how to create an instance of the VFEEMP such that, if the

instance is feasible, then SubsetSum has answer Yes and, otherwise, it has answer No.
The main idea is to first transform the SubsetSum instance by multiplying each bi and c by 2,

to only deal with even numbers. Next, we build an instance in which each tray uses 2bi units of
elevator time, in which the elevator can never be idle, and in which there is a special tray which
must be picked up at time 2c + 1. In this way, being able to serve a subset of trays before time
2c+1 corresponds to finding a subset of the (doubled) integers summing up to 2c, i.e., a set of the
original integers which sums to c.

Formally, we create the VFEEMP instance as follows: let B = 2
∑n

i=1 bi, set the number of
shelves to 1, the number of trays to n+1 and the time horizon to Ω = {1, . . . , B +4}. Each of the
first i = 1, . . . , n trays has:

• Start time window
[
1, B − 2bi

]
and d0i = bi.

• No intermediate tasks.
• End time window

[
bi, bi

]
and d1i = bi, meaning that the end task must be processed right

after the start task.
Tray n+ 1 has:

• Start time window
[
2c+ 1, 2c+ 1

]
and d0n+1 = 1.

5

Depot

Shelf

Ω 1 · · · bπ1
+ 1 · · · 2bπ1

+ 1 · · · 2bπ1
+ bπ2

+ 1 · · · 2bπ1
+ 2bπ2

+ 1 · · · 2c+ 1 2c+ 2 2c+ 3 2c+ 4 · · ·

π1 π1

π1

π1 π2 π2

π2

π2 π3 πj−1 πj πj

πj πj

πj πj πj+1

Figure 2: Visualisation of a feasible VFEEMP transformed from SubsetSum.

• A unique task of duration d1n+1 = 1 with time window
[
1, 1
]
. In our instance this relative

time window is equivalent to absolute time window
[
2c+ 2, 2c+ 2

]
.

• End time window
[
1, 1
]

and d2n+1 = 1. In our instance this relative time window is equivalent
to absolute time window

[
2c+ 3, 2c+ 3

]
.

Because of the characteristics of the instance, finding a solution amounts to determining a permu-
tation of the indices {1, . . . , n + 1} indicating in which order the trays occupy the only shelf. The
upper bounds on the start time windows of the shelves imply that the elevator cannot be idle at
any time in a feasible solution, or there would be no time to serve all trays: each tray i ̸= n + 1
requires 2bi units of time and tray n+1 requires 3 time intervals so that the elevator must be busy
up to the last time interval B + 4.

If VFEEMP is feasible, let (π1, . . . , πn+1) be the permutation corresponding to a solution and
let j be the index such that πj = n + 1. Then, because each tray i consumes exactly 2bi units of
elevator time and because tray n+ 1 must be picked up exactly at time 2c+ 1, then we must have
that

∑j−1
i=1 2bi = 2c. This implies

∑j−1
i=1 bi = c and, therefore, SubsetSum has the answer Yes.

Figure 2 depicts such a situation.
Noting that the above VFEEMP instance can be built in linear time in the size n of the

SubsetSum instance concludes the proof.

5 Model formulation
In this section, we propose four formulations for the VFEEMP. The first three are based on MIP:
the first uses a polynomial number of variables and disjunctive constraints; the second one uses a
pseudo-polynomial number of variables; the third one is a hybrid which only uses binary variables
from the first and the second formulation. Finally, the fourth formulation is based on CP.

5.1 A model with disjunctive constraints
To model the fact that the elevator starts and must return to the depot, we first add to Ω a dummy
time interval 0, and to T a dummy tray with index 0, assigned to the depot with start time window[
0, 0
]

and d00 = 1, no intermediary tasks, and end time window
[
ω, ω

]
and d10 = 1.

We introduce variables yt1,j1,t2,j2 ∈ {0, 1}, for t1, t2 ∈ T , j1 ∈ J ′
t1 and j2 ∈ J ′

t2 (with j1 ̸= j2
when t1 = t2). Variable yt1,j1,t2,j2 takes value 1 iff the elevator performs task j1 on tray t1 and,
immediately afterwards, it performs task j2 on tray t2. Recall that the assignment of trays to
shelves is given, and that we denote with s(t) ∈ S the shelf assigned to tray t ∈ T . We denote with
c(yt1,j1,t2,j2) ∈ N the travel cost associated with variable yt1,j1,t2,j2 . To assign a value to c(·), we
consider the following cases:

j1 = 0 j2 = 0 c(yt1,0,t2,0) = s(t1) + s(t2) (2)
j1 = 0 j2 ∈ Jt2 c(yt1,0,t2,j2) = |s(t1)− s(t2)| (3)
j1 = 0 j2 = lt2 + 1 c(yt1,0,t2,lt2+1) = |s(t1)− s(t2)|+ s(t2) (4)
j1 ∈ Jt1 j2 = 0 c(yt1,j1,t2,0) = s(t1) + s(t2) (5)
j1 ∈ Jt1 j2 ∈ Jt2 c(yt1,j1,t2,j2) = |s(t1)− s(t2)| (6)
j1 ∈ Jt1 j2 = lt1 + 1 c(yt1,y1,t1,lt2+1) = |s(t1)− s(t2)|+ s(t2) (7)
j1 = lt1 + 1 j2 = 0 c(yt1,lt1+1,t2,0) = s(t2) (8)
j1 = lt1 + 1 j2 ∈ J2 c(yt1,lt1+1,t2,j2) = s(t2) (9)
j1 = lt1 + 1 j2 = lt2 + 1 c(yt1,lt1+1,t2,lt2+1) = 2s(t2). (10)

The elevator movements associated with each of these cases are shown in Figure 3. Note that
a case in the figure depicts more movements than those considered in the corresponding cost to

6

→ 0 → s(t1) → 0 → s(t2) →
Case (2)

→ 0 → s(t1) → s(t2) →
Case (3)

→ 0 → s(t1) → s(t2) → 0 →
Case (4)

→ s(t1) → 0 → s(t2) →
Case (5)

→ s(t1) → s(t2) →
Case (6)

→ s(t1) → s(t2) → 0 →
Case (7)

→ s(t1) → 0 → s(t2) →
Case (8)

→ s(t1) → 0 → s(t2) →
Case (9)

→ s(t1) → 0 → s(t2) → 0 →
Case (10)

Figure 3: Possible cases for the costs associated with variables yt1,j1,t2,j2 .

prevent counting some movement costs twice. For example, in Case (10) we do not count the cost
of bringing back the elevator to the depot after picking up tray t1 because it is already counted in
the previous move, which was either a Case (4), a Case (7), or another Case (10).

We also introduce the following notation:

αtj =

{
¯
w0

t if j = 0

¯
w0

t + ¯
wj

t otherwise,
(11)

βtj =

{
w̄0

t if j = 0

w̄j
t + w̄0

t otherwise.
(12)

In other words, αtj and βtj are the earliest and latest time intervals at which task j ∈ J ′
t can start.

We now notice that not all possible quadruples (t1, j1, t2, j2) are valid indices for variables y:
• If t2 = 0 and j2 = 0, then no indices t1, j1, t2, j2 can be valid, as the start task of the dummy

tray cannot have any predecessor.
• Analogously, if t1 = 0 and j1 = 1, then no indices t1, j1, t2, j2 can be valid, because the end

task of the dummy tray cannot have any successor.
• We can also omit indices which would result in time window violations. Specifically, if

βt2j2 < αt1j1 + dj1t1 then task j2 must be performed before task j1 and cannot be its suc-
cessor. Therefore, we need not consider indices t1, j1, t2, j2 satisfying the above condition.

• If t1 = t2, then only indices for which j2 = j1 + 1 are valid; otherwise, tasks would be
performed in the wrong order for that tray.

• If there is another task j3 ∈ J ′
t3 (for some tray t3 ∈ T) which must take place between j1 and

j2, then these two tasks cannot happen in succession. More precisely, indices t1, j1, t2, j2 are
not valid if

∃t3 ∈ T, j3 ∈ J ′
t3 : αt3j3 + dj3t3 > βt1j1 and βt3j3 < αt2j2 + dj2t2 .

Let us denote with V the set of valid indices for variables y, i.e., the set of all quadruples (t1, j1, t2, j2)
which are not excluded by one of the above conditions.

We also consider continuous variables stj indicating the starting time of task j on tray t (t ∈
T, j ∈ J ′

t). Finally, let ∆t1t2 ∈ {0, 1} be a binary variable defined for each pair of trays t1, t2 ∈ T
such that s(t1) = s(t2). It will take value 1 iff tray t1 is placed on the shelf before tray t2. The
VFEEMP can then be modelled with the following MIP, which we denote M1:

min
∑

(t1,j1,t2,j2)∈V

c(yt1,j1,t2,j2) · yt1,j1,t2,j2 (13)

s.t.
∑

(t1,j1,t,j)∈V

yt1,j1,t,j = 1 ∀t ∈ T, ∀j ∈ J ′
t, (t, j) ̸= (0, 0) (14)

∑
(0,0,t,j)∈V

y0,0,t,j = 1 (15)

∑
(t1,j1,t,j)∈V

yt1,j1,t,j =
∑

(t,j,t2,j2)∈V

yt,j,t2,j2∀t ∈ T \ {0}, ∀j ∈ J ′
t (16)

st0 ≥
¯
w0

t ∀t ∈ T (17)
st0 ≤ w̄j

0 ∀t ∈ T (18)

7

stj ≥ st0 +
¯
wj

t ∀t ∈ T, ∀j ∈ J ′
t \ {0} (19)

stj ≤ st0 + w̄j
t ∀t ∈ T, ∀j ∈ J ′

t \ {0} (20)
stj ≥ st,j−1 + dj−1

t ∀t ∈ T, ∀j ∈ J ′
t \ {0} (21)

st2j2 ≥ st1j1 + dj1t1 −M(1− yt1,j1,t2,j2) ∀(t1, j1, t2, j2) ∈ V (22)

st10 ≥ st2,lt2+1 + d
lt2+1
t2 −M ·∆t1t2 ∀t1, t2 ∈ T, s(t1) = s(t2), t1 ̸= t2 (23)

∆t1t2 +∆t2t1 ≤ 1 ∀t1, t2 ∈ T, s(t1) = s(t2), t1 < t2 (24)
yt1,j1,t2,j2 ∈ {0, 1} ∀(t1, j1, t2, j2) ∈ V (25)
stj ≥ 0 ∀t ∈ T, ∀j ∈ J ′

t (26)
∆t1t2 ∈ {0, 1} ∀t1, t2 ∈ T : s(t1) = s(t2), t1 ̸= t2 (27)

The objective function (13) minimises the travel cost of the elevator. Constraints (14) ensure
that every task of every tray (excluding the start task of the dummy tray) has a predecessor and,
therefore, is processed. Constraints (15) force the elevator to process the start task of the dummy
tray, and constraints (16) make sure that every task (excepted those associated with the dummy
tray) has a direct predecessor and a direct successor. Constraints (17) and (18) make sure that each
tray is picked up during its associated (absolute) start time window, and constraints (19) and (20)
ensure that every task other than the start task takes place during its associated (relative) time
window. Constraints (21) force tasks associated with the same tray to be scheduled in the given
order and are necessary because task time windows can overlap. Constraints (22), in which M is
a sufficiently large number, force the starting time of any task to be not earlier than the starting
time plus the duration of its predecessor. The tightest value for M is βt1j1 + dj1t1 − αt2j2 . Note
that constraints (22) could easily be updated to incorporate a travelling time between shelves s(t1)
and s(t2) if the time spent in elevator movements was not negligible compared to the time spent
performing the tasks. Constraints similar to (22) are also used in the literature on routing problems
with time windows to sequence customer visits (see, e.g., constraint (14) of [11]) and in scheduling
to sequence tasks (see, e.g., constraint (5) of [18]). Constraints (23) link variables s and ∆ (again,
using a sufficiently large number M), and constraints (24) ensure that no two trays occupy the
same shelf at the same time. The tightest value for M in (23) is βt2,lt2+1 + d

lt2+1
t2 −αt10. Variables

∆ and constraints (23)–(24) are required because tray shelf lives can overlap and, therefore, the
model must determine a processing order for trays on the same shelf. Finally, (25), (26), and (27)
are variable domain definitions.

For inequalities (22) and (23) we use big-M constraints over SOS/indicator constraints because,
experimentally, the M factors do not cause numerical difficulties. Indeed, we use constraint-specific
M values resulting in coefficients that are not much larger than the other coefficients in the model.

5.1.1 Valid inequalities for M1
We introduce the following sets of valid inequalities for model M1. Their impact is tested by means
of computational experiments presented in Section 7.1.

Task incompatibility (TaskInc). The task incompatibility considerations we use to reduce
the set of feasible indices for variables y can be extended to more than two tasks at a time. For
example, the following inequality is valid for model M1:

yt1,j1,t2,j2 + yt2,j2,t3,j3 ≤ 1 ∀(t1, j1, t2, j2), (t2, j2, t3, j3) ∈ V : βt3j3 < αt1j1 + dj1t1 + dj2t2 . (28)

In this case, (28) states that tasks j1, j2 and j3 cannot be performed in the given order, due to their
time windows and durations. Although one could consider similar clique inequalities for larger sets
of mutually incompatible tasks, detecting such sets becomes harder while the constraints would be
less likely to be active. For this reason, we only add triangle inequalities of type (28) to model M1.

Force task sequence (TaskSeq). While constraint (28) excludes incompatible tasks, we next
present a constraint aimed at forcing tasks to happen one immediately after the other. In other
words, we look for suitable conditions on (t1, j1, t2, j2) ∈ V which force yt1,j1,t2,j2 = 1. These
conditions must ensure that (i) j2 cannot start before j1, and that (ii) no other task j3 (relative to
some tray t3) can start between j1 and j2. A sufficient condition for (i) is that starting j2 at its
earliest possible time would make the elevator miss j1’s time window. A sufficient condition for (ii)
is that there is no valid start time for j3 which is compatible with both j1’s and j2’s time windows.

8

According to these considerations, we introduce the following valid variable fixing equality for model
M1:

yt1,j1,t2,j2 = 1 ∀(t1, j1, t2, j2) ∈ V such that:
αt2j2 + dj2t2 > βt1j1 and
∀t3 ∈ T, ∀j3 ∈ J ′

t3 , (t3, j3) ̸= (t1, j1), (t3, j3) ̸= (t2, j2)

∄k ∈
[
αt3j3 , βt3j3

]
: k ≥ αt1j1 + dj1t1 and k + dj3t3 ≤ βt2j2 . (29)

Furthermore, if condition (ii) holds but condition (i) does not, then no task j3 can start between
tasks j1 and j2; however any of j1 and j2 can precede the other. In this case, if condition (ii) also
holds when swapping j1 and j2 (that is, if no task j3 can start between j2 and j1, as well), then we
can add the following constraint:

yt1,j1,t2,j2 + yt2,j2,t1,j1 = 1 ∀(t1, j1, t2, j2) ∈ V such that
∀t3 ∈ T, ∀j3 ∈ J ′

t3 , (t3, j3) ̸= (t1, j1), (t3, j3) ̸= (t2, j2)

∄k ∈
[
αt3j3 , βt3j3

]
: k ≥ αt1j1 + dj1t1 and k + dj3t3 ≤ βt2j2 and

∄k ∈
[
αt3j3 , βt3j3

]
: k ≥ αt2j2 + dj2t2 and k + dj3t3 ≤ βt1j1 . (30)

Constraint (30) states that either j1 is performed immediately before j2, or j2 is performed imme-
diately after j1. It thus excludes the possibility that the elevator performs the third task between
j1 and j2, no matter in which order j1 and j2 are performed.

2- and 3-cycle elimination (CycElim). We next propose two families of valid inequalities
similar to cycle elimination constraints in routing and elementary shortest path problems [see, e.g.,
10]:

yt1j1t2j2 + yt2j2t1j1 ≤ 1 ∀(t1, j1, t2, j2) ∈ V : (t2, j2, t1, j1) ∈ V (31)
yt1j1t2j2 + yt2j2t3j3 + yt3j3t1j1 ≤ 2 ∀(t1, j1, t2, j2), (t2, j2, t3, j3) ∈ V : (t3, j3, t1, j1) ∈ V (32)

Constraint (31), a 2-cycle elimination constraint, states that either j1 takes place before j2, or j2
takes place before j1. Constraint (32), a 3-cycle elimination constraint, extends the same reasoning
to three tasks at a time. It forbids solutions inducing a “cycle” with j1 performed before j2, j2
before j3, and j3 before j1.

Bounds on task start times (STBound). The next family of valid inequalities aims at
bounding variables stj both from above and below. Given a task j ∈ J ′

t, we first consider the set Πtj

of tray-tasks pairs containing tasks which the elevator cannot perform after j and must, therefore,
precede j: Πtj = {(t′, j′) : αtj + djt > βt′j′ ∈ V }. For any task j′ ∈ J ′

t′ , time instant αt′j′ + dj
′

t′

denotes the earliest possible finish time of task j′. Taking the maximum such value among tasks
j′ ∈ Πtj ensures that the elevator cannot be free to perform task j before this time. Therefore, the
following inequality is valid:

stj ≥ max
(t′,j′)∈Πtj

{
αt′j′ + dj

′

t′

}
∀t ∈ T, ∀j ∈ J ′

t. (33)

Analogously, we can consider the set of tray-task pairs which the elevator cannot perform before
j and must, therefore, follow j: Σtj = {(t′, j′) : αt′j′ + dj

′

t′ > βtj ∈ V }. Then, the following
inequality, analogous to (33), is valid:

stj + djt ≤ min
(t′,j′)∈Σtj

{
βt′j′

}
∀t ∈ T, ∀j ∈ J ′

t. (34)

Minimum inter-task time (MinIT). If a task j′ ∈ Jt′ must follow another task j ∈ Jt (i.e.,
if (j′, t′) ∈ Σjt) then, j′ cannot start before sjt + djt . Therefore, the following constraint is valid:

st′j′ ≥ stj + djt ∀t ∈ T, ∀j ∈ Jt, ∀(t′, j′) ∈ Σjt. (35)

Note that inequality (35) is not implied by (22) and (33). Furthermore, in the continuous relaxation
of the problem, fractional values of y can produce a solution in which (34) is satisfied, but (35) is
violated.

9

5.2 A model with a pseudo-polynomial number of variables
We introduce parameter s(t, j) for t ∈ T and j ∈ J ′

t, which represents the shelf where the elevator
is located after performing task j:

s(t, j) =

{
s(t) if j ̸= lt + 1

0 if j = lt + 1
.

We now define a binary variable xtjk for t ∈ T , j ∈ J ′
t and αtj ≤ k ≤ βtj . Variable xtjk takes value

1 iff the elevator starts performing task j on tray t at time k. We also define an integer variable zk
(k ∈ Ω \ {1}) indicating the cost of the movements made between time k − 1 and time k. Finally,
we introduce a binary variable pik (i ∈ S′ and k ∈ Ω) taking value 1 iff the elevator is at shelf i at
time k.

Then model M2 reads as follows:

min

ω∑
k=2

zk (36)

s.t.
βtj∑

k=αtj

xtjk = 1 ∀t ∈ T, ∀j ∈ J ′
t (37)

n∑
i=0

pik = 1 ∀k ∈ Ω (38)∑
t∈T

∑
j∈J ′

t

∑
k1∈Ωtjk

xtjk1
≤ 1 ∀k ∈ Ω (39)

∑
t∈T

∑
j∈J ′

t
αtj≤k≤βtj

s(t,j)=i

xtjk ≤ pik ∀i ∈ S′, ∀k ∈ Ω (40)

xtjk ≤
∑

k1∈
[
¯
w0

t ,w̄
0
t

]
¯
wj

t≤k−k1≤w̄j
t

xt0k1
∀t ∈ T, ∀j ∈ J ′

t \ {0}, ∀k ∈
[
αtj , βtj

]

(41)

xtjk ≤
∑

k1∈
[
αt,j−1,βt,j−1

]
dj−1
t ≤k−k1

xt,j−1,k1
∀t ∈ T, ∀j ∈ J ′

t \ {0}, ∀k ∈
[
αtj , βtj

]

(42)

xt0k ≤ 1−
∑

t1∈T\{t}
s(t1)=s(t)

(min{k,βt10}∑
k1=αt10

xt10k1 −
min{k,βt1,lt1

+1}∑
k1=αt1,lt1

+1

xt1,lt1+1,k1

)
∀t ∈ T, ∀k ∈

[
αt0, βt0

]
(43)

zk ≥
n∑

i=0

ipi,k−1 −
n∑

i=0

ipik +
∑
t∈T

αt0≤k≤βt0

2 · s(t) · xt0k ∀k ∈ Ω (44)

zk ≥
n∑

i=0

ipik −
n∑

i=0

ipi,k−1 +
∑
t∈T

αt,lt+1≤k≤βt,lt+1

2 · s(t) · xt,lt+1,k ∀k ∈ Ω (45)

xtjk ∈ {0, 1} ∀t ∈ T, ∀j ∈ J ′
t, ∀k ∈

[
αtj , βtj

]
(46)

pik ∈ {0, 1} ∀i ∈ S′, ∀k ∈ Ω (47)
zk ≥ 0 and integer ∀k ∈ Ω, (48)

where Ωtjk contains the starting time indexes of task j of tray t for which the task would not
be completed by time k. The objective function (36) minimises the travel cost of the elevator.
Constraints (37) ensure that every task of every tray is processed (exactly once), and constraints
(38) make sure that the elevator is at a unique position at any moment. Constraints (39) forbid
the elevator to process more than one task at once. Constraints (40) force the elevator to be at the

10

shelf assigned to the tray whose task it is starting to process. These constraints, together with (39)
and objective function (36) ensure that the elevator will not move for the entire duration of the
task. Constraints (41) ensure that each task (except the start task) is started during its relative
time window. These constraints also implicitly ensure that the start task begins within its absolute
time window. Constraints (42) force the tasks to be scheduled in the given order, and are required
because the time windows of consecutive tasks can overlap. Constraints (43) make sure that the
starting task of a tray can only take place once its associated shelf is free. We need these constraints
because the allowed shelf lives can overlap for trays assigned to the same shelf. Finally, constraints
(44) and (45) compute the cost of the moves performed at every time instant (for k = 1, we use the
convention pi,k−1 = 0), while (46)–(48) are variable domain definitions.

5.2.1 Valid inequalities for M2
We adapt the families of valid inequalities STBound and MinIT devised for M1 (see Section 5.1.1).

Valid inequalities (33) and (34) result in fixing x variables to 0 in M2:

xtjk = 0 ∀t ∈ T, ∀j ∈ J ′
t, ∀k ∈

[
αtj , βtj

]
: k < max

(t′,j′)∈Πtj

{
αt′j′ + dj

′

t′

}
(49)

xtjk = 0 ∀t ∈ T, ∀j ∈ J ′
t, ∀k ∈

[
αtj , βtj

]
: k > min

(t′,j′)∈Σtj

{
βt′j′

}
− djt . (50)

Inequality (35) corresponds to the following constraint:

xtjk ≤
∑

k1∈
[
αt′j′ ,βt′j′

]
dj′

t′≤k−k1

xt′j′k1
∀t ∈ T, ∀j ∈ J ′

t, ∀k ∈
[
αtj , βtj

]
, ∀(t′, j′) ∈ Πjt. (51)

5.3 A hybrid model
We now introduce a model which uses both binary variables yt1,j1,t2,j2 of M1 and xtjk of M2, and
does not need any other set of variables. We denote this model as M3.

min
∑

(t1,j1,t2,j2)∈V

c(yt1,j1,t2,j2) · yt1,j1,t2,j2 (52)

s.t.
∑

(t1,j1,t,j)∈V

yt1,j1,t,j = 1 ∀t ∈ T, ∀j ∈ J ′
t, (t, j) ̸= (0, 0)

(53)∑
(0,0,t,j)∈V

y0,0,t,j = 1 (54)

∑
(t1,j1,t,j)∈V

yt1,j1,t,j =
∑

(t,j,t2,j2)∈V

yt,j,t2,j2 ∀t ∈ T \ {0}, ∀j ∈ J ′
t

(55)
βtj∑

k=αtj

xtjk = 1 ∀t ∈ T, ∀j ∈ J ′
t (56)

∑
t∈T

∑
j∈J ′

t

∑
k1∈Ωtjk

xtjk1 ≤ 1 ∀k ∈ Ω (57)

xtjk ≤
∑

k1∈
[
¯
w0

t ,w̄
0
t

]
¯
wj

t≤k−k1≤w̄j
t

xt0k1
∀t ∈ T, ∀j ∈ J ′

t \ {0}, ∀k ∈
[
αtj , βtj

]

(58)

xtjk ≤
∑

k1∈
[
αt,j−1,βt,j−1

]
dj−1
t ≤k−k1

xt,j−1,k1
∀t ∈ T, ∀j ∈ J ′

t \ {0}, ∀k ∈
[
αtj , βtj

]

(59)

11

xt0k ≤ 1−
∑

t1∈T\{t}
s(t1)=s(t)

(min{k,βt10}∑
k1=αt10

xt10k1
−

min{k,βt1,lt1
+1}∑

k1=αt1,lt1
+1

xt1,lt1+1,k1

)
∀t ∈ T, ∀k ∈

[
αt0, βt0

]
(60)

yt1,j1,t2,j2 + xt1j1k1
≤ 1 ∀(t1, j1, t2, j2) ∈ V, ∀k1 ∈ Γ1

t1,j1,t2,j2

(61)

yt1,j1,t2,j2 + xt1j1k1 +
∑

k2∈
[
αt2j2 ,βt2j2

]
k2<k1+d

j1
t1

xt2j2k2 ≤ 2 ∀(t1, j1, t2, j2) ∈ V, ∀k1 ∈ Γ2
t1,j1,t2,j2

(62)
yt1,j1,t2,j2 ∈ {0, 1} ∀(t1, j1, t2, j2) ∈ V,

(63)
xtjk ∈ {0, 1} ∀t ∈ T, ∀j ∈ J ′

t, ∀k ∈
[
αtj , βtj

]
.

(64)

In the formulation of M3 we used the following sets:

Γ1
t1,j1,t2,j2 = {1 + βt2j2 − dj1t1 , . . . , βt1j1},

Γ2
t1,j1,t2,j2 =

{
αt1j1 , . . . ,min{βt1j1 , βt2j2 − dj1t1}

}
.

The objective function (52) and constraints (53)–(55) are the same as, respectively, objective (13)
and constraints (14)–(16) of M1. Analogously, constraints (56)–(60) are the same as (37)–(43) of
M2. The only new constraints are (61) and (62), which link variables x and y. In particular, (61)
prevents the elevator from starting a task j1 at time k1 if it is the predecessor of another task j2
that has to be started at time k1+dj1t1 −1 or before. Analogously, (62) forbids j1 to start at time k1
if it is the predecessor of another task j2 starting at a time k2 such that k1 + dj1t1 > k2. Inequalities
(28)–(32) and (49)–(51) are also valid for M3. Note that if the travelling time between shelves is
not negligible, we only have to change (61) by adjusting the range of coefficient k2 in the condition
“k2 < k1 + dj1t1”.

5.4 A constraint programming model
Our CP model, M4, uses two sets of variables. The first set is comprised of integer variables
stj ∈

[
αtj , βtj

]
indicating the starting time of task j ∈ J ′

t of tray t ∈ T . The second set is made of
interval sequence variables A(t, j), with A(t1, j1) = (t2, j2) iff the elevator performs task j2 on tray
t2 immediately after performing task j1 on tray t1. The model reads as follows:

min
∑
t∈T

∑
j∈J

′
t

c(yt,j,A(t,j)) (65)

s.t. stj ≥ st0 +
¯
wj

t ∀t ∈ T, ∀j ∈ J ′
t \ {0} (66)

stj ≤ st0 + w̄j
t ∀t ∈ T, ∀j ∈ J ′

t \ {0} (67)
stj ≥ st,j−1 + dj−1

t ∀t ∈ T, ∀j ∈ J ′
t \ {0} (68)

NoOverlap
{
[stj , stj + djt], ∀t ∈ T, ∀j ∈ J ′

t

}
(69)

st10 ≥ st2,lt2+1 + d
lt2+1
t2 OR st20 ≥ st1,lt1+1 + d

lt1+1
t1 ∀t1, t2 ∈ T, s(t1) = s(t2), t1 ̸= t2

(70)
stj ∈

[
αtj , βtj

]
∀t ∈ T, ∀j ∈ J ′

t (71)
A(t1, j1) ∈ {(t2, j2) : t2 ∈ T, j2 ∈ J

′

t2 , (t1, j1) ̸= (t2, j2)}∀t1 ∈ T, ∀j1 ∈ J ′
t1 . (72)

The objective function (65) minimises the travel cost of the elevator by using the interval
sequence variables to compute the appropriate values of function c(·) introduced in Section 5.1.
Interval sequence variables also ensure that all but one task (the last of the sequence) have a direct
successor and that every task is processed. Constraints (66) and (67) make sure that every task
(except the start tasks) takes place during its associated (relative) time window. Constraints (68)
force tasks associated to the same tray to be scheduled in the given order. Constraint (69) forbids
the elevator to process more than one task at a given moment. Constraints (70) ensure that no

12

two trays occupy the same shelf at the same time. Domain constraints (71) and (72) define the
variable domains, with (71) also ensuring that every starting task is processed during its absolute
time window.

Implementation details. We solve model M4 with the Cplex constraint programming opti-
miser (see Section 7). We define each task as an IloIntervalVar variable and model the domain
constraints with functions setStartMin and setStartMax. Precedence constraints between the
starting task and the other tasks of the same tray are enforced using IloStartBeforeStart and
IloStartOf: the former to forbid that task start too early and the latter to forbid that they start
too late. We model precedence constraints between two consecutive tasks of the same tray using
IloEndBeforeStart. We used IloStartOf, IloEndOf, and the logical operator “||” to model con-
straints (70). We embed the IloIntervalVar variables in an IloIntervalSequenceVar variable,
which we use to compute the objective function, with the help of the IloTypeOfNext function.
Finally, we model the non-overlap constraint using IloNoOverlap.

6 Instance generation
We generated two sets of instances, named Synthetic and Realistic. The Synthetic set pro-
vides a wide variety of instance parameters (time horizon length, number of shelves and trays,
number and duration of tasks, etc.) in order to test the quality of the proposed formulations on
a diverse test body. The Realistic set provides instances which closely resemble real-life applica-
tions in VF silos.

6.1 Synthetic Instances
We describe the process used to generate feasible synthetic instances. Note that, because the
VFEEMP is NP-complete, verifying the feasibility of an instance is, in general, hard. Therefore,
we approach the instance generation problem starting from a backbone instance which is guaranteed
to be feasible and transforming it into a complete instance while preserving feasibility. We use three
phases to generate an instance:

• We first generate a sequence of tasks with their respective start times and durations as they
would appear in a feasible solution, i.e., we guarantee that the elevator can perform all tasks.
We call this structure the backbone instance.

• Next, we assign the tasks to the trays and the trays to shelves, ensuring that no two trays
occupy the same shelf at the same time.

• Finally, we add time windows around the start times generated to allow for optimisation
opportunities and reordering of tasks.

Generating task start times and durations. Let m ∈ N be the number of trays in the
instance, ω ∈ N be the time horizon length, and δ ∈ N be the target number of tasks to assign
to each tray. We first create a list of η := mδ tasks specifying, for each of them, their start time
and their duration. Task start times are obtained by randomly and uniformly sampling η time
instants from set {1, . . . ω − 1}; we denote the start times as ks

1, . . . , k
s
η. Without loss of generality,

let ks
j < ks

j+1 for all j ∈
[
1, η − 1

]
. Next, we assign each task a duration. We first sample a

tentative duration ds
j uniformly at random in

[
1,max{1, ⌊ω/η⌋}

]
. If ds

j > ks
j+1, i.e., if two tasks

would overlap, we set ds
j = ks

j+1.

Assigning tasks to trays. We first assign the start task of the trays; afterwards, we assign
all other tasks. For each tray t ∈

[
1,m

]
, we select a task uniformly at random as t’s start task.

In this phase we exclude from the possible tasks those whose start time is too close to the end of
the time horizon; to this end, we do not consider tasks j such that ks

j > 4
5ω. We remove all tasks

assigned as start tasks from the list of available tasks. Next, we assign δ − 1 further tasks to each
tray. Let js

t ∈ {1, . . . , η} be the index of the task chosen as start task for t and recall that tasks
are indexed in increasing order of their start time. For each tray t, we scan available tasks one by
one starting from js

t +1 (or whatever is the first available task after js
t). When scanning a task, we

assign it to tray t with a probability πgr ∈ (0, 1). In case the task is assigned, we remove it from
the list of assigned tasks; otherwise, we move on to scanning the next available task until we add
all δ − 1 remaining tasks to tray t. Probability πgr measures how “greedily” we assign consecutive
tasks to the same tray. A high value of πgr gives trays with shorter and non-overlapping shelf lives;
conversely, low values of πgr result in trays with longer and overlapping shelf lives.

13

Assigning trays to shelves. We assign trays to shelves greedily. We first sort trays by their
shelf life start and then assign each tray to the available shelf with the lowest index. A shelf
is available if it is not occupied by another tray at that moment. The number of shelves is not
bounded a priori, but we note that high values of πgr allow more trays to occupy the same shelf
(during different periods, of course) and result in a number of shelves typically between m

2 and 3m
4

in our instances. Low values of πgr reduce the probability that two trays can be assigned to the
same shelf and result in a number of shelves typically between 3m

4 and m.

Generating time windows. The last phase in our instance generation procedure consists of
generating time windows around the task start times of the backbone instance. Given a task j,
its time window is

[
ks
j − ξ, ks

j + ξ
]

and time windows for non-start tasks are adjusted compared to
the tray planting time to make them relative. The time window half-width is defined as ξ := γ ω

mδ ,
where γ ≥ 1 is a parameter. Larger values of γ result in larger and more frequently overlapping
time windows, which give more feasible task orderings for the elevator.

Parameters used. Table 1 describes the parameters used for instance generation. We generate
an instance for each possible combination of the parameters, which vary independently. This gives
a total of 35 = 243 instances in the Synthetic set.

Parameter Description Values
m Number of trays 14, 16, 18
ω Time horizon length 150, 200, 250
δ Tasks per tray 4, 5, 6
πgr Greediness of task assignment 0.2, 0.4, 0.6
γ Time window size multiplier 1.0, 1.5, 2.0

Table 1: Parameters used in the generation of the Synthetic instance set.

Figure 4 shows the optimal solution of an example instance generated with parameters m = 16,
ω = 250, δ = 5, πgr = 0.6, γ = 1.5. The x axis represents the time instants and the y axis the shelf
number. Each yellow box denotes the “shelf life” of a tray, whose progressive id number is reported
next to the top-left corner of the box. The lines represent the elevator moving and performing tasks
(in black) or being idle (in red).

Figure 4: Optimal solution of a Synthetic instance with parameters m = 16, ω = 250, δ = 5,
πgr = 0.6, γ = 1.5.

14

6.2 Realistic instances
To generate the Realistic set, we used real-life confidential data about the growth cycle of six crops
and the relative tasks to be performed when they grow in a VF silo. Compared to the Synthetic
set, these instances have much larger time horizons, larger shelf lives and time windows, and more
tasks per tray. Time horizons range from 15 to 128 days which, at a resolution of one time instant
per 15 minutes, corresponds to values of ω between 1440 and 12288. The instances contain either
5, 10, 15, or 20 shelves and between 5 and 40 trays. Each tray has, on average, 115.4 assigned tasks
(including the start and end tasks).

The Realistic instances are particularly challenging because the number of variables and
constraints in our models grows as a function of either the number of trays, the number of tasks,
the time horizon length, the time windows sizes, or a combination of these factors. Furthermore,
large time windows with significant overlaps contribute to the difficulty of these instances (see
Section 7.1.3).

Figure 5: Optimal solution of a Realistic instance with six trays and a time horizon of 80 days (7680
time instants).

Figure 5 shows the optimal solution of a Realistic instance with six trays and a time horizon
of 80 days. Comparing Figure 4 and Figure 5, we highlight the differences in the length of the time
horizon, the average shelf life, and the number of tasks associated with each tray.

7 Computational results
In this section, we present insights on the behaviour of our models on both the Synthetic and
Realistic instances presented in Section 6. We analyse the impact of the valid inequalities intro-
duced in Section 5 and identify instance characteristics which make the problem harder to solve.
All models were implemented in C++; we solved the MIP models using Gurobi version 9 and the
CP model using Cplex version 12.1. We make available on GitHub [16] the instance generator, the
solver source code and the instance files. We performed the computational experiments on a 4-core
machine equipped with an Intel Xeon CPU runing at 2.4GHz and 4GB RAM.

7.1 Results on the Synthetic instances
We used the synthetic instances as a test bed to investigate:

• The impact of valid inequalities TaskInc, TaskSeq, CycElim, STBound, and MinIT on
the linear relaxation of the three MIP formulations.

• The impact of the above valid inequalities on the branch-and-bound algorithm used by Gurobi
to solve the integer models.

15

None TaskInc TaskSeq CycElim STBound MinIT

γ δ Gap% T Gap% T # Gap% T # Gap% T # Gap% T # Gap% T #

1.0

4 4.141 0.2 3.767 0.2 129 4.086 0.2 19 3.981 0.3 803 3.985 0.2 3 3.896 0.3 2009
5 4.553 0.2 4.219 0.2 147 4.359 0.2 22 4.453 0.3 877 4.412 0.2 2 4.321 0.3 3097
6 6.435 0.2 5.898 0.2 191 6.416 0.2 28 6.347 0.3 1071 6.404 0.3 3 6.345 0.4 4343
All 5.025 0.2 4.612 0.2 156 4.935 0.2 23 4.909 0.3 917 4.915 0.2 3 4.835 0.3 3150

1.5

4 3.412 0.2 3.328 0.3 235 3.407 0.2 14 3.422 0.3 1544 3.432 0.2 2 3.430 0.3 1929
5 5.421 0.2 5.015 0.3 311 5.270 0.3 20 5.309 0.4 1994 5.248 0.3 2 5.224 0.4 2997
6 7.872 0.3 7.163 0.3 386 7.875 0.3 25 7.803 0.5 2367 7.918 0.3 1 7.849 0.6 4280
All 5.568 0.2 5.169 0.3 311 5.517 0.3 20 5.511 0.4 1968 5.532 0.3 2 5.501 0.4 3069

2.0

4 4.220 0.3 4.059 0.3 379 4.277 0.3 14 4.335 0.4 2647 4.283 0.3 2 4.315 0.4 1885
5 6.880 0.3 6.515 0.3 530 6.872 0.3 19 6.900 0.5 3439 6.807 0.3 2 6.865 0.5 2980
6 8.170 0.4 7.840 0.4 643 8.158 0.4 26 8.320 0.6 4091 8.140 0.4 2 8.284 0.6 4211
All 6.402 0.3 6.117 0.4 517 6.414 0.3 20 6.496 0.5 3392 6.388 0.3 2 6.466 0.5 3025

All 5.665 0.3 5.299 0.3 328 5.622 0.3 21 5.638 0.4 2093 5.612 0.3 2 5.600 0.4 3081
-0.366 +0.0 -0.043 +0.0 -0.027 +0.1 -0.053 +0.0 -0.065 +0.2

Table 2: Impact of valid inequalities on the strength of the continuous relaxation of model M1.

None STBound MinIT

γ δ Gap% T Gap% T # Gap% T #

1.0

4 16.937 1.0 16.937 1.1 4 16.937 3.6 14844
5 18.450 1.1 18.450 1.1 3 18.450 4.6 19033
6 23.015 1.2 23.015 1.2 3 23.015 6.1 24356
All 19.423 1.1 19.423 1.1 3 19.423 4.7 19411

1.5

4 11.635 1.2 11.635 1.2 3 11.635 5.4 18641
5 15.581 1.3 15.581 1.4 2 15.581 7.5 25383
6 20.992 1.5 20.992 1.5 1 20.992 9.3 31710
All 16.070 1.4 16.070 1.3 2 16.070 7.4 25245

2.0

4 10.487 1.6 10.487 1.6 2 10.487 8.7 23212
5 13.854 1.9 13.854 1.9 2 13.842 12.2 31817
6 17.320 1.8 17.320 1.9 2 17.320 14.5 38684
All 13.844 1.8 13.844 1.8 2 13.840 11.8 31238

All 16.444 1.4 16.444 1.4 3 16.443 8.0 25298
-0.000 +0.0 -0.001 +6.5

Table 3: Impact of valid inequalities on the strength of the continuous relaxation of model M2.

• How instance characteristics, determined by the instance generation parameters, affect the
runtimes and optimality gaps of the MIP formulations.

• How the CP approach compares with the best MIP model.

7.1.1 Impact of valid inequalities
In Section 5, we introduced five families of valid inequalities. All five of them are applicable to
models M1 and M3, while only inequalities STBound and MinIT are valid for model M2.

We first measure the impact that each inequality, in isolation, has on the value of the continuous
relaxation of the three models. To this end, we consider the value of the relaxation gap defined as
Gap% = 100·(UB−LB)/UB where, for each instance, UB represents the best-known primal solution
and LB is the objective value of the continuous relaxation. We present these results in Tables 2
to 4, where columns “T” report the time in seconds needed to solve the continuous relaxation and
columns “#” list the number of valid inequalities added. Some columns “#” are omitted in Table 4
because the values for TaskInc, TaskSeq and CycElim are the same as in Table 2, while the
values for STBound are the same as in Table 3. Values for MinIT are different between models
M2 and M3 because the latter uses the dummy tray 0 while the former does not. Instances are
grouped by two generation parameters, γ and δ, which have an important impact on the difficulty
of the instances (see Section 7.1.3). Each row refers to the average over all instances sharing the
same parameter values for γ and δ. The last row reports, for each valid inequality, the percentage
gap decrease and the root runtime variation, over all instances of the Synthetic set.

The columns labelled with None, which report the results of the base formulations without
valid inequalities, make clear that model M1 has the strongest relaxation, followed by M3. Model

16

None TaskInc TaskSeq CycElim STBound MinIT

γ δ Gap% T Gap% T Gap% T Gap% T Gap% T Gap% T #

1.0

4 5.573 0.5 5.249 0.5 5.551 0.5 4.865 0.5 5.509 0.5 5.509 1.5 15373
5 6.404 0.5 5.953 0.5 6.363 0.5 5.416 0.5 6.373 0.5 6.373 1.9 19602
6 8.357 0.5 7.779 0.5 8.362 0.6 7.256 0.6 8.357 0.5 8.373 2.4 24969
All 6.758 0.5 6.309 0.5 6.739 0.5 5.828 0.5 6.726 0.5 6.731 1.9 19981

1.5

4 4.721 0.6 4.288 0.7 4.721 0.7 4.314 0.7 4.721 0.7 4.721 2.7 19319
5 6.773 0.8 6.294 0.8 6.750 0.7 6.116 0.8 6.773 0.8 6.773 3.5 26123
6 9.888 0.9 9.331 0.8 9.888 0.8 9.314 1.0 9.888 0.8 9.888 4.1 32494
All 7.127 0.8 6.638 0.8 7.120 0.7 6.581 0.8 7.127 0.7 7.127 3.4 25979

2.0

4 5.504 1.0 5.147 1.0 5.504 1.0 5.295 1.1 5.504 1.0 5.504 4.1 24053
5 8.375 1.1 7.776 1.1 8.375 1.1 8.050 1.3 8.375 1.1 8.375 5.5 32737
6 9.841 1.2 9.421 1.2 9.841 1.2 9.433 1.5 9.841 1.2 9.841 6.7 39648
All 7.882 1.1 7.423 1.1 7.882 1.1 7.570 1.3 7.882 1.1 7.882 5.4 32146

All 7.255 0.8 6.789 0.8 7.246 0.8 6.659 0.9 7.245 0.8 7.247 3.6 26035
-0.466 +0.0 -0.009 +0.0 -0.596 +0.1 -0.011 +0.0 -0.009 +2.8

Table 4: Impact of valid inequalities on the strength of the continuous relaxation of model M3.

M2 exhibits large root gaps, which do not decrease adding valid inequalities.
The impact of valid inequalities on the other two models is positive. For M1, inequalities

TaskInc have the strongest effect. Other inequalities only slightly decrease the root gaps. On the
other hand, adding any type of inequality does not significantly increase the runtime at the root
node. Note that we generate very few inequalities of family STBound; despite their number, they
have a small but non-negligible impact on the root gap.

Valid inequalities have a larger effect on model M3, although not enough to make it competitive
with M1. As for M1, inequalities TaskInc are effective; for model M3, however, CycElim are
even more effective and achieve a root gap reduction of almost 0.6 percentage points. Inequalities
MinIT slightly reduce the gaps but significantly increase the runtime, due to their high number.

7.1.2 Branch-and-bound performance
A tighter continuous relaxation does not necessarily correspond to a MIP which is easier to solve.
Therefore, we use the results obtained in Section 7.1.1 as an indication, but still perform further
experiments to determine the impact of valid inequalities on the overall branch-and-bound algorithm
used to solve the three formulations. Because evaluating all possible subsets of inequalities to
activate would be too time consuming, we add them incrementally. For each model, we start from
the one which reduced the average percentage gap the most according to the results presented in
Section 7.1.1, and proceed in decreasing order.

For each model, we report results relative to two formulations. The first is the base model
without valid inequalities, under header Base. The second is the formulation, among those we test
following the above procedure, which gives the lowest average gap (see below for a precise definition
of the gap). For model M2 the base formulation also gives the lowest gap.

Table 5 reports the results of our experiments. Columns “Gap%” list the percentage optimality
gap obtained with a time limit of one hour. The gap is defined as 100 · (UB − LB)/UB, where UB
and LB are, respectively, the best primal and dual bounds obtained within the time limit. Columns
“T” report the runtime in seconds, while columns “N” list the number of branch-and-bound nodes
visited. Columns “Opt%” give the percentage of instances solved to optimality.

For model M1, we obtain the best results when adding inequalities TaskInc and MinIT; for
model M3, when adding inequalities TaskInc and CycElim.

Model M1 clearly outperforms the other two formulations. When strengthened with the valid
inequalities, in fact, M1 solves almost 99% of the Synthetic instances to optimality, with an
average runtime of 72.021 seconds. Model M3 (with valid inequalities) also shows good performance,
solving more than 94% of the instances. Its average runtime and gap are worse than those of M1
over all subsets of instances and, therefore, we see no reason to prefer it to M1 even on a subset
of the instances. Finally, formulation M2 is the weakest of the three. It starts with the weakest
continuous relaxation at the root node and shows the highest gaps and the lowest number of closed
instances at the end of the 1-hour time limit. Its average gaps, however, are always under 0.2%,
showing that M2 suffers from a “tail effect”: the dual bound increases quickly in the beginning,
but then stops at a sub-optimal value. We also point out that additional experiments based on
a dataset that was not generated with backbone instances (i.e., in which the instances were not

17

M
1

B
as

e
M

1
+

T
as

kI
nc

+
M

in
IT

M
2

B
as

e
M

3
B

as
e

M
3

+
T

as
kI

nc
+

C
yc

E
li

m

γ
δ

G
ap

%
T

N
O

pt
%

G
ap

%
T

N
O

pt
%

G
ap

%
T

N
O

pt
%

G
ap

%
T

N
O

pt
%

G
ap

%
T

N
O

pt
%

1.
0

4
0.

00
0

2.
30

5
15

38
10

0.
00

0.
00

0
2.

62
3

20
11

10
0.

00
0.

08
7

35
54

.7
30

79
98

68
3.

70
0.

00
0

30
.2

89
58

52
10

0.
00

0.
00

0
25

.5
56

20
74

10
0.

00
5

0.
00

0
2.

99
7

24
40

10
0.

00
0.

00
0

2.
93

7
19

92
10

0.
00

0.
07

0
34

04
.0

87
73

96
83

11
.1

1
0.

00
0

31
.9

63
48

75
10

0.
00

0.
00

0
21

.8
19

29
89

10
0.

00
6

0.
00

0
6.

59
0

57
60

96
.3

0
0.

00
0

6.
03

7
40

68
96

.3
0

0.
09

9
32

62
.2

02
29

68
11

11
.1

1
0.

00
0

80
.5

70
10

65
9

96
.3

0
0.

00
0

23
.5

24
51

36
96

.3
0

A
ll

0.
00

0
3.

96
4

32
46

98
.7

7
0.

00
0

3.
86

6
26

90
98

.7
7

0.
08

5
34

07
.0

06
61

21
20

8.
64

0.
00

0
47

.6
08

71
28

98
.7

7
0.

00
0

23
.6

33
34

00
98

.7
7

1.
5

4
0.

00
0

5.
09

0
38

22
10

0.
00

0.
00

0
3.

60
3

25
87

10
0.

00
0.

07
7

36
00

.1
98

31
50

71
0.

00
0.

00
0

10
2.

19
9

98
80

10
0.

00
0.

00
0

74
.1

87
78

54
10

0.
00

5
0.

00
0

21
.9

00
14

43
4

10
0.

00
0.

00
0

53
.6

49
13

84
5

10
0.

00
0.

10
8

36
00

.5
00

27
18

07
0.

00
0.

00
0

39
9.

75
5

32
62

9
10

0.
00

0.
00

0
25

8.
67

3
20

34
1

10
0.

00
6

0.
00

1
20

1.
81

8
60

72
0

92
.5

9
0.

00
1

19
2.

65
3

51
75

3
96

.3
0

0.
14

0
36

00
.2

64
33

00
30

0.
00

0.
00

4
61

1.
30

0
52

74
4

96
.3

0
0.

00
1

45
1.

47
9

37
78

9
96

.3
0

A
ll

0.
00

0
76

.2
69

26
32

5
97

.5
3

0.
00

0
83

.3
02

22
72

8
98

.7
7

0.
10

9
36

00
.3

21
30

56
36

0.
00

0.
00

1
37

1.
08

5
31

75
1

98
.7

7
0.

00
0

26
1.

44
6

21
99

4
98

.7
7

2.
0

4
0.

00
0

18
.6

79
19

37
5

10
0.

00
0.

00
0

17
.1

39
89

37
10

0.
00

0.
07

5
36

00
.2

54
20

84
56

0.
00

0.
00

0
39

5.
42

3
33

28
2

10
0.

00
0.

00
0

25
3.

99
7

20
41

7
10

0.
00

5
0.

00
0

14
5.

37
9

79
70

3
10

0.
00

0.
00

0
13

9.
41

5
80

96
8

10
0.

00
0.

12
0

36
00

.2
08

30
57

14
0.

00
0.

00
7

13
38

.8
18

90
52

9
88

.8
9

0.
00

4
99

2.
72

4
67

95
9

85
.1

9
6

0.
00

1
29

2.
85

7
11

15
67

92
.5

9
0.

00
0

23
0.

13
1

89
26

1
96

.3
0

0.
14

5
34

66
.8

92
14

68
30

0.
00

0.
01

0
17

35
.7

71
13

38
00

70
.3

7
0.

00
6

15
40

.4
71

75
72

4
74

.0
7

A
ll

0.
00

0
15

2.
30

5
70

21
5

97
.5

3
0.

00
0

12
8.

89
5

59
72

2
98

.7
7

0.
11

3
35

55
.7

85
22

03
33

0.
00

0.
00

5
11

56
.6

71
85

87
0

86
.4

2
0.

00
3

92
9.

06
4

54
70

0
86

.4
2

A
ll

0.
00

0
77

.5
13

33
26

2
97

.9
4

0.
00

0
72

.0
21

28
38

0
98

.7
7

0.
10

2
35

21
.0

37
37

93
63

2.
88

0.
00

2
52

5.
12

1
41

58
3

94
.6

5
0.

00
1

40
4.

71
4

26
69

8
94

.6
5

Ta
bl

e
5:

C
om

pa
ris

on
of

ba
se

an
d

st
re

ng
th

en
ed

m
od

el
s

w
he

n
so

lv
in

g
th

e
M

IP
fo

rm
ul

at
io

ns
M

1,
M

2
an

d
M

3
w

ith
so

lv
er

Gu
ro

bi
.

18

Figure 6: Impact of instance generation parameters on the runtime of model M1 + TaskInc + MinIT.

necessarily feasible) showed that M2 was the fastest model to detect infeasibility. In practical
applications, M2 could cover a complementary role to M1; for example, a decision-maker can run
both models in parallel when it is not certain that a feasible elevator schedule exists.

7.1.3 Impact of instance generation parameters
We investigate which instance characteristics are associated with harder-to-solve problems. To this
end, we use the best-performing model identified in Section 7.1.2, M1 + TaskInc + MinIT, and
analyse how its runtime varies depending on parameters m, ω, δ, πgr, and γ.

Figure 6 shows how average runtimes vary with the above parameters. Each plot corresponds
to a different parameter and each box to a different value of that parameter. The average runtimes
over all Synthetic instances are reported on the y axis, on a logarithmic scale. The horizontal lines
inside the boxes and the numbers over them represent the median runtimes. Boxes span from the
1st to the 3rd quartiles; whiskers extend to the rest of the distributions, except for outliers marked
with diamond flyers. A point is deemed an outlier if it lies more than 1.5 times the inter-quartile
range outside the two central quartiles.

All instance generation parameters have a considerable impact on the solver runtime. Larger
instances with more trays (higher values of m) are, predictably, harder to solve. Instances in
which jobs are “squeezed” in a small time horizon (small ω) and instances with longer shelf lives
(smaller values of the greedy probability parameter πgr) also correspond to longer runtimes. In
general, instances with more overlap of task time windows are harder to solve, as confirmed by the
large increase in runtimes when increasing the time-window half-width parameter γ. Increasing the
number of tasks assigned to each tray (parameter δ) also makes the model more challenging.

To better study the relationship between instance and MIP model characteristics, we report in
Figure 7 the correlation matrix between:

• The instance generation parameters: m, ω, δ, πgr, and γ.
• Two indicators which measure how “dense” an instance is. The first is the number of trays

19

Figure 7: Correlation matrix between instance generation parameters and key indicators related to the
instances (the ratio of trays to shelves, m/n, and the average number of open time windows per instant
Ā) and to model M1 + TaskInc (the number of rows NR, of columns NC, of non-zeroes NN, and the
runtime in seconds).

per shelf (m/n). The second is the average number of open time windows per time instant,
defined as

Ā =
1

ω

∑
t∈T

∑
j∈J ′

t

(
βtj − αtj

)
.

• Three indicators of the size of the resulting MIP: the number of columns (NC), the number
of rows (NR, which includes both rows in the basic formulation of M1 and valid inequalities),
and the number of non-zero entries in the constraint matrix (NN).

• The runtime in seconds.
Parameters m and δ have the largest impact on the size of the model, because they directly

affect the size of set V , i.e., the number of y variables. Indicator Ā also affects the size of the model
because the more time windows overlap, the fewer tuples (t1, j1, t2, j2) can be excluded from set V
using the procedure described in Section 5.1. Larger models (higher NR, NC, NN) result in longer
runtimes, while indicator m/n negatively correlates with runtimes. This is because, everything
else being equal, in instances with larger m/n the same number of trays is packed in fewer shelves
during the instance generation procedure. This is possible because tray shelf lives are short and
non-overlapping, which are conditions which make fixing variables ∆ and y easier, and allow to
generate more inequalities TaskInc.

7.1.4 Comparison between Branch-and-bound and Constraint Programming
We end this section by comparing the MIP and CP approaches for the VFEEMP. To this end, we
compare the best MIP-based model (M1 + TaskInc + MinTT) with constraint-programming
model M4.

Table 6 reports the results of this experiment. To compare the primal solutions from MIP and
CP algorithms, columns “Gap%” refer to the percentage gap with the optimal solution of each
instance (or the best-known solution for the only instance in the Synthetic set which we could

20

M1 + TaskInc + MinIt M4
γ δ Gap% T Opt% Gap% T Opt%

1.0

2 0.000 2.623 100.00 0.586 3600.000 0.00
3 0.000 2.937 100.00 0.433 3600.000 0.00
4 0.000 6.037 100.00 0.578 3466.667 3.70
All 0.000 3.866 100.00 0.532 3555.556 1.23

1.5

2 0.000 3.603 100.00 0.800 3600.000 0.00
3 0.000 53.649 100.00 1.624 3600.000 0.00
4 0.012 192.651 96.30 2.046 3600.000 0.00
All 0.004 83.301 98.77 1.490 3600.000 0.00

2.0

2 0.000 17.139 100.00 1.452 3600.000 0.00
3 0.000 139.415 100.00 2.771 3600.000 0.00
4 0.000 230.131 100.00 2.853 3466.667 3.70
All 0.000 128.895 100.00 2.352 3555.556 1.23

All 0.001 72.020 99.59 1.458 3570.371 0.82

Table 6: Comparison of the best MIP model, M1 + TaskInc + MinTT, and the CP model, M4.

not solve to optimality). We report the run-times in seconds in column “T”. Column “Opt%” lists
the percentage of instances for which the final solution returned by the algorithm was equal to the
optimal solution. This does not mean that CP could prove that the solution was optimal: indeed,
except for two small instances, CP could never prove optimality within the time limit. Even though
CP is not competitive with model M1, its optimality gaps are small (around 1.5% on average).
Further analysis on CP outputs showed that the best solution was usually found in the first five
minutes. This indicates that, for very difficult instances, there could be an interest in running CP
for a limited amount of time to find an initial solution and use it as a warm-start in the other
models.

7.2 Results on the Realistic instances
This section reports results on the Realistic instances, which differ from the Synthetic ones due
to their much larger time horizons and the higher number of tasks assigned to each tray. During
preliminary experiments, we noticed that MIP-based models often struggled to find any primal
solution. For this reason, during these experiments, we provided these models with an initial
feasible solution obtained running the CP model M4 for 5 minutes (thus leaving 55 minutes as
available runtime for the MIP models).

To account for the larger instance size, we increased the amount of allocated RAM from 4GB to
12GB. Even with this adjustment, though, models M2 and M3 ran out of memory on, respectively,
18 and 19 of the 50 instances. Therefore, we report results comparing models M1 + TaskInc +
MinIT and M4, i.e., on the two models that solved all instances in the set. Moreover, model M2
proved that one of the instances we were provided with was infeasible. Thus, the following results
refer to the remaining 49 instances.

M1+ M4
n # Gap% T Gap% T
5 8 6.07 2275.21 24.05 3600.00
10 15 35.67 3600.00 42.36 3600.00
15 14 61.76 3600.00 57.31 3600.00
20 12 67.97 3600.00 60.57 3600.00
All 46.20 3385.49 47.84 3600.00

Table 7: Results of models M1 + TaskInc + MinTT and M4 on the Realistic instances.

21

Table 7 reports the results of our experiments. Because the CP algorithm does not provide
meaningful gaps and because we do not know the optimal solution to most of the Realistic
instances, to obtain a uniform comparison we compute the values in columns “Gap%” as the
percentage gap between the primal bound provided by each of the two algorithms and the dual
bound provided by M1. Columns “T” report the average time in seconds. Each row aggregates
results over all instances with the same number of shelves, whose number is reported in column
“#”.

We note that the Realistic instances are hard to solve to optimality. Percentage gaps at the
end of the time limit stay high, although it is not clear whether this is due to a low quality primal
bound or a low quality dual bound (or both). We observe that for the largest instances (n ≥ 15),
the primal bound found by the CP model was better than the one found by M1. Further analysis
showed that for these instances, the CP model improved its best solution consistently until the end
of the time limit, which is a major difference with respect to the Synthetic instances where the
best incumbent was found within the first five minutes. We also note that the size of model M1+

was huge (around 35000 variables and 3.25 million constraints on average), mainly because of the
valid inequalities. As we observed that most constraints were removed by the inner preprocessing
of Gurobi, we tried the simplest version of M1 (i.e., without any valid inequalities), but the results
were significantly worse.

8 Conclusions and future research
We introduced the Vertical Farming Elevator Energy Minimisation Problem (VFEEMP), a real-
world problem arising from the operations of autonomous vertical farms. We showed that its
decision version is NP-complete and presented three MIP formulations together with a set of valid
inequalities, and a CP model for the problem. We also introduced two sets of benchmark instances,
one derived from real-life data, and the other to determine the instance characteristics that make the
problem harder to solve. We empirically evaluated the performance of the models and the impact
of the valid inequalities and showed that (i) MIP model M1 with valid inequalities TaskInc and
MinIT obtained the best performance on synthetic and small-size realistic instances, and (ii) CP
model M4 helps finding good quality initial solutions for small-size synthetic instances and was
superior to M1 for large-size realistic instances. We also identified parameters that make instances
harder to solve for our models: a large number of trays, a large number of tasks per tray, and large
time windows. Indeed, the two first characteristics directly influence the number of variables and
constraints in the models, while the latter increase the number of possible quadruple (t1, j1, t2, j2)
that are valid indices for variables y.

Future work shall focus on the development of specialised heuristics for the problem. It would
also be interesting to study the development of decomposition approaches. For example, disre-
garding time window violations in the master problem and checking the validity of the resulting
schedule in the slave problem. Another possibly fruitful research avenue is time decomposition. For
example, in Figure 5, solving the instance first for trays 1,2,3,5, and the first tasks of tray 4, and
then tackling the remaining tasks of tray 4 and tray 6. However, since the windows are relatives,
such decomposition would not necessarily reach an optimal solution.

Furthermore, other relevant real-world variants of the problem could be studied: in a generali-
sation of our problem, the planner could be allowed to decide the shelf associated with each tray.
In other words, the control system of the VF tower would have to jointly assign trays to shelves
and plan the movements of the elevator. In a further generalisation, we could allow the elevator to
move a tray from one shelf to another (empty) shelf at any point during the growth period of the
tray. Even though this operation has some energy costs, it can potentially bring more savings on
the long run, for example, when bringing an isolated tray closer to the rest of the occupied shelves.

Acknowledgements
Alberto Santini was partially funded by: MICINN (Spain) through the programme Juan de la
Cierva Formación; AEI (Spain) and the Barcelona Graduate School of Economics (Spain) through
Severo Ochoa grant CEX2019-000915-S; the European Union’s Horizon 2020 research and inno-
vation programme under a Marie Skłodowska-Curie grant (EUTOPIA Cofund); ESSEC Business
School (France) through the Visiting Professor programme.

22

References
[1] Rami Abukhader and Samer Kakoore. “Artificial intelligence for vertical farming. Con-

trolling the food production”. MA thesis. Mälardalen University, 2021. url: https:
//www.diva-portal.org/smash/get/diva2:1526309/FULLTEXT01.pdf.

[2] Dafni Despoina Avgoustaki and George Xydis. “Indoor vertical farming in the urban
nexus context: business growth and resource savings”. In: Sustainability 12.5 (2020).
doi: 10.3390/su12051965.

[3] Andrew Beacham, Laura Vickers, and James Monaghan. “Vertical farming: a summary
of approaches to growing skywards”. In: The Journal of Horticultural Science and
Biotechnology 94.3 (2019), pp. 277–283. doi: 10.1080/14620316.2019.1574214.

[4] Kurt Benke and Bruce Tomkins. “Future food-production systems: vertical farming
and controlled-environment agriculture”. In: Sustainability: Science, Practice and Pol-
icy 13.1 (2017), pp. 13–26. doi: 10.1080/15487733.2017.1394054.

[5] Julia Bennell, Toni Martinez, and Chris Potts. “Scheduling for the growing of crops
to meet demand”. In: Mic’17. Session T2.2: Scheduling. Proceeding of the 12th Meta-
heuristics International Conference (Universitat Pompeu Fabra). Barcelona, Spain,
2017. url: https://web.archive.org/web/20210116182958/https://easychair.
org/smart-program/MIC'2017/2017-07-06.html. (archived: 2021-01-16).

[6] Shaylin Cetegen and Matthew Stuber. “Optimal design of controlled environment agri-
cultural systems under market uncertainty”. In: Computers & Chemical Engineering
149 (2021). doi: 10.1016/j.compchemeng.2021.107285.

[7] Malek Al-Chalabi. “Vertical farming: skyscraper sustainability?” In: Sustainable Cities
and Society 18 (2015), pp. 74–77. issn: 2210-6707. doi: 10.1016/j.scs.2015.06.003.

[8] Nina Fedoroff. “Food in a future of 10 billion”. In: Agriculture & Food Security 4.1
(2015), pp. 1–10. doi: 10.1186/s40066-015-0031-7.

[9] Intelligent Growth Solutions, Ltd. IGS growth towers. 2021. url: https : / / web .
archive.org/web/20210221183103/https://www.intelligentgrowth.io/technology/
growth-towers. (archived: 2021-02-21).

[10] Stefan Irnich and Daniel Villeneuve. “The shortest-path problem with resource con-
straints and k-cycle elimination for k ≥ 3”. In: INFORMS Journal on Computing 18.3
(2006), pp. 391–406. doi: 10.1287/ijoc.1040.0117.

[11] Imdat Kara and Tusan Derya. “Formulations for minimizing tour duration of the
traveling salesman problem with time windows”. In: Procedia Economics and Finance
26 (2015), pp. 1026–1034. doi: 10.1016/s2212-5671(15)00926-0.

[12] Toyoki Kozai. Smart plant factory: the next generation indoor vertical farms. Springer,
2018. doi: 10.1007/978-981-13-1065-2.

[13] Toyoki Kozai, Genhua Niu, and Michiko Takagaki. Plant factory: an indoor vertical
farming system for efficient quality food production. Elsevier Academic Press, 2015.
doi: 10.1016/c2014-0-01039-8.

[14] Ferdinando Pezzella, Gianluca Morganti, and Gianfranco Ciaschetti. “A genetic al-
gorithm for the flexible job-shop scheduling problem”. In: Computers & Operations
Research 35 (10 2008), pp. 3202–3212. doi: 10.1016/j.cor.2007.02.014.

[15] Yuzhuo Qiu, Jun Qiao, and Panos Pardalos. “A branch-and-price algorithm for pro-
duction routing problems with carbon cap-and-trade”. In: Omega 68 (2017), pp. 49–61.
doi: 10.1016/j.omega.2016.06.001.

[16] Alberto Santini. energy-efficient-automatic-vertical-farms. Aug. 2021. doi: 10.5281/
zenodo.5185902. url: https://github.com/alberto-santini/energy-efficient-
vertical-farms.

[17] Alberto Santini, Enrico Bartolini, Michael Schneider, and Vinicius Greco de Lemos.
“The crop growth planning problem in vertical farming”. In: European Journal of
Operational Research 294 (1 2021), pp. 377–390. doi: 10.1016/j.ejor.2021.01.034.

23

https://www.diva-portal.org/smash/get/diva2:1526309/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1526309/FULLTEXT01.pdf
https://doi.org/10.3390/su12051965
https://doi.org/10.1080/14620316.2019.1574214
https://doi.org/10.1080/15487733.2017.1394054
https://web.archive.org/web/20210116182958/https://easychair.org/smart-program/MIC'2017/2017-07-06.html
https://web.archive.org/web/20210116182958/https://easychair.org/smart-program/MIC'2017/2017-07-06.html
https://doi.org/10.1016/j.compchemeng.2021.107285
https://doi.org/10.1016/j.scs.2015.06.003
https://doi.org/10.1186/s40066-015-0031-7
https://web.archive.org/web/20210221183103/https://www.intelligentgrowth.io/technology/growth-towers
https://web.archive.org/web/20210221183103/https://www.intelligentgrowth.io/technology/growth-towers
https://web.archive.org/web/20210221183103/https://www.intelligentgrowth.io/technology/growth-towers
https://doi.org/10.1287/ijoc.1040.0117
https://doi.org/10.1016/s2212-5671(15)00926-0
https://doi.org/10.1007/978-981-13-1065-2
https://doi.org/10.1016/c2014-0-01039-8
https://doi.org/10.1016/j.cor.2007.02.014
https://doi.org/10.1016/j.omega.2016.06.001
https://doi.org/10.5281/zenodo.5185902
https://doi.org/10.5281/zenodo.5185902
https://github.com/alberto-santini/energy-efficient-vertical-farms
https://github.com/alberto-santini/energy-efficient-vertical-farms
https://doi.org/10.1016/j.ejor.2021.01.034

[18] Alberto Santini, Henrik Alsing Friberg, and Stefan Ropke. “A note on a model for
quay crane scheduling with non-crossing constraints”. In: Engineering Optimization
47.6 (2015), pp. 860–865. doi: 10.1080/0305215x.2014.958731.

[19] Xueqi Wu and Ada Che. “Energy-efficient no-wait permutation flow shop scheduling
by adaptive multi-objective variable neighborhood search”. In: Omega 94 (2020). doi:
10.1016/j.omega.2019.102117.

[20] Chao-Lung Yang, Yulius Hari, and Yan-Fu Kuo. “Multiple-crop scheduling for plant
factory”. In: Ismab’12. Proceedings of the 6th International Symposium on Machinery
and Mechatronics for Agriculture and Biosystems Engineering (June 18–20, 2012).
Jeonju, Korea, 2012.

[21] Chao-Lung Yang, Sin-Jie Huang, and Chit-Hui Ang. “Recursive heuristic scheduling
method for multi-crop plant factory with solar panel roof”. In: Computers and Elec-
tronics in Agriculture 165 (2019). doi: 10.1016/j.compag.2019.104941.

24

https://doi.org/10.1080/0305215x.2014.958731
https://doi.org/10.1016/j.omega.2019.102117
https://doi.org/10.1016/j.compag.2019.104941

	Introduction
	Problem description
	Literature review
	Problem formalisation
	Model formulation
	A model with disjunctive constraints
	Valid inequalities for M1

	A model with a pseudo-polynomial number of variables
	Valid inequalities for M2

	A hybrid model
	A constraint programming model

	Instance generation
	Synthetic Instances
	Realistic instances

	Computational results
	Results on the Synthetic instances
	Impact of valid inequalities
	Branch-and-bound performance
	Impact of instance generation parameters
	Comparison between Branch-and-bound and Constraint Programming

	Results on the Realistic instances

	Conclusions and future research

