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Abstract

In this paper, we study the problem of planning the growth of crops on shelves in vertical farming
cabinets under controlled growth conditions. By adjusting temperature, humidity, light, and other
environmental conditions in different parts of the cabinets, a planner must ensure that crop growth
is able to satisfy some deterministic demand. We prove this problem to be NP-hard and propose
an integer programming formulation able to capture real-life operational characteristics, including
changes of growth conditions on a daily, shelf-by-shelf basis, over a planning horizon of months.
We compare four objective functions from which a planner can choose, depending on the specific
operations of the company. A computational study on realistic instances, which we make available
as a public dataset, shows that the choice of objective function heavily influences both the difficulty
of solving the model with a standard solver and the solution characteristics.

1 Introduction

The stocks of arable land per person are declining worldwide, due to increasing population and urbani-
sation rates, decreasing water availability, and climate change (Fedoroff 2015). Increasing land use for
standard agricultural practices has undesirable effects, such as deforestation, an elevated use of fertilisers
and pesticides, soil degradation and its eventual depletion, low yield per unit of surface, and extensive
transportation costs to move produce from the production to the consumption site (Benke and Tomkins
2017). All these effects take their toll both economically and, more importantly, on the environment and
the well-being of urban and rural communities alike. The large-scale increase in food demand forecast
to take place within the next decades has prompted the investigation of alternative production methods.
The main aim of these efforts is to increase the yield per square meter while reducing negative effects
on the environment and being economically viable (Beacham, Vickers, and Monaghan 2019).

One of the new production methods which is gaining considerable traction is Vertical Farming (VF), i.e.,
growing crops in vertical stacked layers rather than on the ground (Beacham, Vickers, and Monaghan
2019). Figure 1 shows three stacked layers hosting mulberry plants. Each shelf provides the plants
with nutrients; in the case depicted in the figure, the plants grow without soil and absorb the nutrients
directly from water (a growth method known as hydroponics). The shelves also provide light, ventilation
and, optionally, controlled temperature and CO2 levels. The size of the stacks can vary considerably
and spans from small shelf cabinets to entire plant factories (Kozai 2018; Kozai, Niu, and Takagaki
2015). Their hosting structures range from specially-built buildings to shipping containers and from
reused pre-existing buildings to cabinets no larger than a standard refrigerator.
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Figure 1: Stacks of shelves in which mulberries are growing in a hydroponic system, i.e., receiving
their nutrients directly from water, without soil. Photograph by Satoshi Kinokuni, distributed under a
CC-BY-2.0 license.

A desirable property of the host structure is that it is isolated from the external environment. This
allows the plants to grow in a controlled environment (CE) with regulated levels of light, water, and
humidity that can even vary on a shelf-by-shelf basis. One of the advantages of CE systems is that
they are independent of external weather and light conditions and can thus be used in a variety of
regions: they are not affected by floods, droughts, and other catastrophic events. They also allow for
minimal interaction with the outside environment, sheltering the crops from parasites, pathogens, or
heavy metals (all common occurrences in open-air farming) and thus eliminating the need for pesticides
and herbicides. Final commercial users, such as restaurants, food markets, or hotels, can accommodate
the cabinets on their premises, reducing or eliminating any transport cost and the resulting negative
effects on the environment. Crops growing in CE are also not affected by seasonality, and the operators
can plan their production to match the demand all year round (Benke and Tomkins 2017).

On the negative side, growth in a CE is more expensive in terms of energy than open-air farming due
to the need of constant artificial lightning. In recent years, however, the energy footprint of CE systems
has improved thanks to low-consumption LED lights and the increased efficiency of on-site renewable
energy production and storage.

VF offers opportunities that contribute to achieve the Sustainable Development Goals of the United
Nations (UN General Assembly 2015): Goal 2: Zero Hunger can be supported by large-scale VF
systems producing staple foods in large quantities in countries with restricted space availability or
hostile conditions for open-air farming, while the ability of VF systems to reduce the negative effects of
traditional farming as described above can play a role in achieving Goal 12: Responsible Consumption
and Production and Goal 15: Life On Land. Moreover, we note that in pandemic situations like the
outbreak of COVID-19, VF systems may offer the additional autonomy and independence from transport
operations that is necessary to implement quarantine measures in affected areas.

1.1 Problem description

We consider the problem of a planner who must operate a VF cabinet to grow crops and meet some
deterministic future demand. Each cabinet is composed of a set of stacked shelves, which can host
the crops during their growth cycle. Industry-grade cabinets allow to specify the growth conditions of
each shelf individually, and may vary it day by day. The planner must define the growth conditions
(temperature, light, humidity) of each shelf, for every day of the planning horizon, keeping in mind
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that changing configurations too frequently can lead to mistakes and reduce the energy efficiency of the
system (for example, swapping back-and-forth between colder and hotter temperatures).

The planner must also decide in which shelf they will place each plant, making sure that the receiving
shelf has the right conditions for the current growth phase of the plant. Growth times of crops under
controlled conditions are predictable, and therefore, the planner will plant with suitable advance de-
pending on the days in which there is demand for each crop. In other words, the planner does not have
to choose the growth start time or the sequence of crops to grow because both are predetermined by
the demand. Another factor influencing the allocation of crops to shelves is that shelves have limited
capacity, which can vary depending on the growth medium used (e.g., hydroponics, aeroponics, peat,
synthetic material).

The planner can also move plants from one shelf to another during their growth, however, too many
movements can damage the crops. For example, moving plants can be beneficial to consolidate in
the same shelf plants requiring the same growth conditions, but that are currently located in different
shelves; in this way, the planner can empty shelves to use for growing other crops requiring different
conditions.

In the days with demand, the planner will harvest the required plants. In case demand is too high
compared to the size of the cabinet, the planner can decide to reject some orders and not meet part of
the demand. An easy way to ensure demand is met is to build larger cabinets, but this would lead to
higher building and operating costs. Thus, the planner might also want to know what is the optimal
size of their cabinet, given some future demand.

To meet the diverse requirements outlined above, we propose and study four possible goals that a
planner can find useful: (i) maximise the demand met, given a fixed number of cabinets; (ii) minimise
the number of times shelf configurations change; (iii) minimise the number of times crops move between
shelves; (iv) minimise the number of shelves required to meet a given demand.

We call this problem the Crop Growth Planning Problem (CGPP).

1.2 Contribution

The main contributions of this paper are the following.

• To the best of our knowledge, we are the first to consider the problem of optimally planning the
growth of crops in VF cabinets. The relevance of this problem stems from the social, environmental,
and economic challenges to which VF offers a viable solution, as outlined above.

• We incorporate real-life constraints determined by crop growth conditions and the available infras-
tructure. Our model is flexible enough to allow for the growth conditions to change daily and on
a shelf-by-shelf basis. Growers require such a degree of flexibility to provide the crops with ideal
growth conditions and maximise the quality of their yield.

• We formalise the CGPP and provide a complete Integer Linear Programme (ILP), proposing four
models that differ in their objective functions as outlined above, and decision makers can choose
the objective function most suitable for their needs. We prove that the problem is NP-hard,
independent of the objective function used.

• We perform an extensive computational study to compare the performance of the models, to
determine the size of problem instances solvable via standard solvers, and to compare the opera-
tional effects of choosing different objective functions. We use a realistic dataset with instances
containing up to six crops, twelve shelves, and a time horizon of 100 days. We conclude that the
objective function has a large effect on the difficulty of solving the problem. Moreover, solutions
obtained optimising with regards to one objective typically fare poorly with respect to the other
objectives.
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After providing an overview of the literature in Section 2, we formalise the CGPP and frame it as an
ILP in Section 3. In Section 4, we present the outcome of extensive experiments on realistic instances,
providing computational results and managerial insights. We conclude and point out future research
directions in Section 5.

2 Literature review

The literature on the topic of crop production planning in VF is scarce. The only work we are aware of is
that of Bennell, Martinez, and C. Potts (2017), who use Operational Research techniques for scheduling
crops in shelf cabinets. The work stems from an industry collaboration with a local business and has
not been published as a technical report or journal paper. The authors study the problem of minimising
unmet demand in a growing cabinet in which each shelf can be subject to different lightning and
irrigation conditions. Another decision is the growing medium to assign to each shelf, which influences
both its capacity and which crops can grow on the shelf. The main difference with the CGPP lies in the
presence of a scheduling component in the work of Bennell, Martinez, and C. Potts (2017) because the
crop growth length can vary within a given time window. The authors use an ILP to precisely describe
the problem. The ILP is large (for example, it uses four set of variables, three of which are five-indexed),
and although the model is not explicitly provided in their presentation, the authors report that it can
solve instances with 3 crops and a 70-day planning horizon, but it is not able to solve a problem with
5 crops within 1 day of computing time. To tackle realistically-sized instances of the problem, the
authors use a heuristic that decomposes the problem into two subproblems. The first tries to minimise
unmet demand while satisfying capacity constraints, but it does not allocate crops to shelves. The
second subproblem performs the actual allocation, minimising the number of movements. Thus, the
problem has a hierarchical objective function. Because the second subproblem is still computationally
challenging, the authors solve it with a rolling-horizon heuristic. Using this approach, they are able to
obtain solutions of instances with up to 9 crops, 15 shelves, and a planning horizon of 70 days.

As already noted by Bennell, Martinez, and C. Potts (2017), the problem of planning the growth of
crops in VF has superficial similarities with machine scheduling problems. In particular, we can consider
each shelf as a machine, and each crop growth phase as a task required to complete a job. Under this
analogy, the CGPP has similarities with parallel machine scheduling (Li and Yang 2009; Mokotoff 2001)
(because shelves work in parallel), parallel machine scheduling with splitting jobs (Xing and Zhang
2000) (because units of the same crop can grow on different shelves), scheduling with batching (C. N.
Potts and Kovalyov 2000) (because different crops can share the same shelf when requiring a common
configuration), and job shop scheduling (Chaudhry and Khan 2016; Jain and Meeran 1998) (because each
crop must go through its growth phases in a given order). Under scheduling terminology, crop growth
is non-preemptive because it cannot stop and resume at a later time, and machines are capacitated
because each shelf can host a maximum amount of crop units. From this viewpoint, the CGPP has
particular similarities with hybrid flow shop scheduling problems (see, e.g, Ruiz and Vázquez-Rodríguez
(2010) for a comprehensive survey) because each crop may be viewed as a job that must be processed
non-preemptively through a predefined sequence of stages (its growth phases), and multiple machines
(the shelves) are available at each stage.

However, the CGPP also exhibits considerable differences with respect to classical scheduling problems,
and cannot be modelled as such. The main difference is that scheduling problems involve two sets
of decision: first, assigning tasks to machines; second, sequencing and timing tasks on their assigned
machines. In the CGPP, the second part is missing because the sequence of growth cycles is fixed,
and the demands and the lengths of growth determine in advance the planting and harvesting times.
Returning to the analogy with hybrid flow shops, this means that no scheduling decision, in the classical
sense, is required at any stage. In fact, for each job (crop) and each point in time it is known a priori
whether the job will be processed at that time. Rather, because crops can be moved from one shelf to
another without interrupting their growth, the decisions to be taken at each stage are whether or not
each machine (shelf) is used and to which machine each job is assigned. This is a simplifying factor
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compared to scheduling problems. On the other hand, a specific difficulty of the CGPP (besides the
fact that shelves are capacitated) is that shelves must be configured at each stage to be compatible
with the crops that they host. As the analysis in Section 3.5 suggests, this aspect seems to be the main
complexity driver in CGPP.

Another fundamental difference with respect to classical scheduling problems lies in the objective func-
tions considered. Typical objectives of scheduling problems involve penalties related to makespan,
tardiness or earliness; i.e., it is the time at which jobs end which influences the objective cost. In the
CGPP these objectives do not apply because crop demand determines the finishing times of jobs.

Other characteristics which separate the CGPP from classical problems are the following:

• Our machines (the shelves) can be reconfigured and, thus, perform a wide variety of tasks. Al-
though some flexible manufacturing systems allow a certain level of machine adaptability (see, e.g.,
(Logendran and Sonthinen 1997)), in most production environments, each machine has a specific
function and a limited set of tasks it can perform.

• The CGPP is different from machine scheduling problems with preemption because crop growth
cannot be put on hold. Although crops can be moved to any shelf as often as desired, the moves
are immediate and there is no break in between. On the other hand, when preemption is allowed
in scheduling problems, tasks are normally required to resume on the same machine where they
stopped (see, e.g., (Liu and Cheng 2002; Thevenin, Zufferey, and Potvin 2017)) after a setup time.
In the CGPP, setup times (i.e., the time needed to plant crops in a shelf) are generally negligible
because our unit of time discretisation is a day.

• Machines are capacitated, but their capacity is not fixed and rather depends on the configuration
used at a given moment. By contrast, in most capacitated job shop, flow shop or lot sizing
models, machine capacities are either fixed or can increase by paying a (overtime) penalty (see,
e.g., (Buschkühl et al. 2010; Ramezanian, Saidi-Mehrabad, and Teimoury 2013)).

• Although each job is made up of a sequence of tasks (the growth phases), in principle a single
machine could carry out the whole job if reconfigured to follow the requirements of the crop during
its different phases. In typical job shop and flow shop problems, including their flexible variants,
different tasks require different machines.

In terms of its combinatorial structure, the CGPP has closer ties to multicommodity fixed-charge
network flow models, which becomes evident in the formulations presented in Section 3. Solutions of
these models can indeed be interpreted as multi-commodity flows through a time-expanded network in
which the nodes are associated with indicator variables and capacity constraints. There is a vast amount
of applications that have been modelled and addressed as multicommodity (fixed-charge) network flow
problems (see e.g., (Magnanti and Wong 1984; Ahuja, Magnanti, and Orlin 1993; Batta and Kwon 2013)),
and a detailed review is beyond the scope of this paper. However, we are not aware of applications
similar to the one addressed in this paper. For example, our scenario also differs from lot sizing
problems (Brahimi et al. 2017; Jans and Degraeve 2008) (or similar problems which include a lot-sizing
component and can be modeled as fixed-charge network flow problems) because we have no inventories
and no setup, inventory or backlogging costs. Seeds and seedlings are inexpensive to store, so we need
not consider raw material inventories; produce is perishable, so there cannot be any finished product
inventory; growth is uninterruptible, so there is no intermediate product inventory. Also, because of
the efficiency of VF and the use of high-yield crops with a high value per unit of weight, the marginal
cost for unmet demand is high and deliberate stockout is never an economic option. This means that
production costs are sunk, and we should aim at producing as much as possible; only when demand is
higher than capacity, we can perform a selection of which crops to grow, trying to stock-out on the least
profitable crops (see Section 3.2.3).

We conclude that no other planning problem investigated in the literature adequately captures the
specificity of growing crops in VF cabinets. Hence, the necessity exists to develop new, dedicated
mathematical formulations for this problem.

5



3 Mathematical models

To formalise the CGPP, we introduce the following notation. We consider a set C of crops that grow
on a set S of shelves during a time horizon D = {1, . . . , d̄− 1}. Each element of D represents one day;
d̄ is the last day when harvest is possible, and d̄ − 1 is the last day when growth is possible (assume
that crops are harvested at the beginning of the day). We also consider the extended time horizon
D′ = {0} ∪ D, where we use day 0 to model seeds not yet planted, which will start growth on day 1.
On each day d ∈ D ∪ {d̄}, we have to meet a demand of pcd units for each crop c ∈ C (with pcd ∈ N).

A parameter δcs ∈ {0, 1} determines compatibility between crops and shelves, taking value 1 iff crop
c ∈ C is able to grow on shelf s ∈ S. For example, some shelves could be not deep or tall enough
for growing certain crops. In addition, we define the set of shelves compatible with each crop as
Sc = {s ∈ S : δcs = 1}.

Furthermore, a crop goes through different phases in its growth, each requiring precise conditions, such
as temperature level, humidity, and growth medium characteristics. One unit of crop c grows for γc
days, i.e., it has to spend γc days in the VF system. On each day of growth g ∈ {1, . . . , γc}, we require
the system to keep the shelf that hosts the unit at condition kc,g ∈ K, where K is the set of possible
conditions for the shelves. Practically, K is the set of all feasible combinations of parameters for soil
type, temperature, humidity, CO2, air flow, etc. In real-life applications, the required conditions do
not change on a daily basis but only when the crop changes from one growth phase to the next, such
as germination, seedling growth, etc. The conditions also affect the shelf capacity, i.e., the number of
units of crops that can grow on the shelf simultaneously. We denote the capacity of a shelf s ∈ S under
conditions k ∈ K as qsk, with qsk ∈ N. Note that the capacity refers to the total number of units of any
crop that can grow on the shelf at the same time, thereby allowing mixing different crops on the same
shelf.

In practice, growers tend to avoid moving plants too much and, both for simplicity and to reduce
movements, try to place plants on shelves which will be able to accommodate them for their entire
growth cycle. However, it is easy to model a situation in which plants can start growth on a short shelf
but later need a taller shelf by making the compatibility parameter δcs introduced above dependent on
the growth day g.

For modelling convenience, we extend the set S with two dummy shelves, obtaining set S′ = {σ, τ} ∪ S
and sets S′

c = {σ, τ} ∪ Sc. Element σ represents the seed vault, i.e., a virtual location for units of crop
before they enter the VF system. Analogously, τ represents the produce storage, i.e., the virtual location
where units of crop go when they are ready for pick-up. Furthermore, we denote as growth day 0 the
last day a unit of crop is in the seed vault. In other words, the set of extended growth days for a crop
c is {0, 1, . . . , γc}.

Because commercial VF cabinet shelves are often not all different, we can reduce the size of the model
by considering the set T of shelf types. Shelves of the same type have the same compatibility with crops
and the same capacities. We can then use parameters δct ∈ {0, 1} for compatibility between crop c ∈ C
and shelves of type t ∈ T , and qtk ∈ N to denote the capacity of any shelf of type t under condition
k ∈ K. Analogously, we can define sets T ′ = {σ, τ} ∪ T , Tc = {t ∈ T : δct = 1}, and T ′

c = {σ, τ} ∪ Tc.
We denote as nt, with nt ∈ N, the number of shelves of type t ∈ T available in the VF system.

We use two sets of variables:

• xc,gt1,d,t2
∈ N is the number of units of crop c ∈ C in their g-th day of growth (g ∈ {0, . . . , γc}),

growing on shelves of type t1 ∈ T ′
c on day d ∈ D′ and going to shelves of type t2 ∈ T ′

c on day
d+ 1.

• yt,d,k ∈ N is the number of shelves of type t ∈ T with configuration k ∈ K on day d ∈ D.

It is helpful to visualise the shelves (as shelf types) and the time horizon as a time-expanded graph,
in which paths represent movement of crops while growing. Figure 2 depicts an example with three
shelf types, two crops (represented by the dashed and dotted paths, respectively), and no compatibility
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d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

σ

type 3

type 2

type 1

τ

k1 k1 k1 k1

k2 k2

k3 k3

Figure 2: Time-expanded graph whose columns represent days, and rows represent shelf types. The two
arrow paths (dashed and dotted) show two crops growing in the system. The labels next to the nodes
represent the shelf configurations.

constraints. The first crop needs to spend three days on a shelf with configuration k1, followed by two
days on a shelf with configuration k2. If we have demand for this crop on day 6, this means the growth
needs to start at the beginning of the time horizon and, in fact, the crop leaves the seed vault on day
0 and is already growing on a shelf of type 1 on day 1. The second crop needs four days in the system:
during the first two, it needs a shelf with configuration k1, and during the second two, a shelf with
configuration k3. In this example, we assume that the total number of units we are growing does not
exceed the capacity of the shelves of type 1 (in configuration k1), and both crops can be present at the
same time on these shelves on day 3.

In the following, we describe in detail a mathematical base model that uses an aggregation of shelves
into shelf types. For certain objective functions we must modify the model to introduce new variables
or index existing ones on the shelves instead of the shelf types; in this case, we will explain how to
set up alternative models. We present the constraints of the model in Section 3.1 and discuss the
possible objective functions in Section 3.2; the reader can also find complete models in the appendix.
Sections 3.3 and 3.4 explain how to strengthen the base model by fixing variables and adding valid
inequalities, respectively. Finally, in Section 3.5 we prove that the CGPP is NP-hard.

3.1 Constraints

In the following, we describe the constraints to ensure that we satisfy demand and respect capacity
limits and shelf condition compatibility.

Demand satisfaction implies that the correct amount of units of crop reach the produce storage on
time: ∑

t∈Tc

xc,γc

t,d−1,τ = pcd ∀c ∈ C,∀d ∈ D ∪ {d̄}. (1)

Equation (1) guarantees that an amount of units of crop c equal to the demand on day d is sent
from any shelf (where it was on day d− 1) to the produce storage.

Capacity constraints ensure that a feasible amount of units of crops is grown on any given shelf, on
any given day. Recall that shelf capacities are not fixed but depend on the specific configuration
used. We can calculate the number of units of crops on shelves of type t1 with configuration k
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on a given day d by counting, for example, how many units move out from these shelves, i.e.,
summing over outgoing arcs.∑

t2∈T ′

∑
c∈C

δct1=1
δct2=1

∑
g∈{1,...,γc}

k=kc,g

xc,gt1,d,t2
≤ qt1k · yt1,d,k ∀t1 ∈ T, ∀d ∈ D, ∀k ∈ K. (2)

Note how equation (2) also serves as a linking constraint, forcing variables y to take non-zero
value for a type-day-configuration combination when there are x variables using a shelf of the
given type, with the given configuration, on the given day.

Planting constraints: Because the demand determines when the operator needs to harvest a crop,
and crop growth lasts a fixed number of days, demand indirectly also determines when the operator
will plant the crops. ∑

t∈Tc

xc,0σ,d−γc−1,t = pcd ∀c ∈ C,∀d ∈ {γc + 1, . . . , d̄}. (3)

Flow-balance constraints: While equation (1) constrains arcs inbound to the produce storage and
equation (3) constrains arcs outbound from the seed vault, the following set of constraints refer
to arcs to and from non-dummy shelves. They ensure that any amount of crop growing on shelves
of one type on a given day is sent to the same shelf or other shelves for the next day.∑

t2∈T ′
c

xc,gt2,d−1,t1
=

∑
t2∈T ′

c

xc,g+1
t1,d,t2

∀c ∈ C, ∀g ∈ {0, . . . , γc}, ∀t1 ∈ Tc, ∀d ∈ D. (4)

Note how equation (4) also ensures that the growth day increases by one each time a day passes.

Configuration constraints ensure that we select no more configurations than there are shelves, for
each shelf type on each day. ∑

k∈K
yt,d,k ≤ nt ∀t ∈ T, ∀d ∈ D. (5)

3.2 Objective functions

Practical applications can vary considerably in the objectives that a planner wants to achieve. In the
described VF setting, no single objective function is obviously the correct one to study. Therefore, we
investigate a number of meaningful objectives in the following and describe how they can be modelled.

d = 0 d = 1 d = 2 d = 3

σ

shelf 2

shelf 1

type 1

τ

k1 k2

k3

d = 0 d = 1 d = 2 d = 3

σ

shelf 2

shelf 1

type 1

τ

k1

k1

k2

k3

Figure 3: Example of two growth schedules (left and right) which are indistinguishable by looking at
the x variables aggregated by shelf type, but are different if we index the x variables over the single
shelves.
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3.2.1 Minimise the number of movements

Moving a crop from a shelf to another one is time-consuming, can damage the crop, or make it undergo
unnecessary stress. It would be convenient, then, for crops to stay as much as possible in the same shelf
and having the shelf conditions change appropriately to match crop growth phases.

If we use variables aggregated on the shelf types, it is impossible to model each movement of a crop from
shelf to shelf. To see why this is the case, consider two crops c1, c2 which grow for 2 days (γc1 = γc2 = 2),
and a VF system with two shelves s1, s2 of a single type t, both with large capacities under all growing
conditions. Crop c1 needs to spend one day in condition k1, followed by one day in condition k2; crop
c2 needs one day in condition k1, followed by one day in condition k3.

If we must plant and harvest both crops at the same time, then the following two schedules are both
feasible, but the first involves one crop movement while the second involves none:

• Grow both crops c1, c2 on shelf s1 on the first day (in configuration k1). Then put s1 in configu-
ration k2 and keep crop c1 there, and put s2 in configuration k3 and move crop c2 there.

• Put crop c1 on shelf s1, in configuration k1 on the first day, and k2 on the second day. Put crop
c2 on shelf s2, in configuration k1 on the first day, and k3 on the second day.

Figure 3 represents the two possible schedules. Notice how in both cases the x variables would have the
same values: xc1,0σ,0,t = xc1,1t,1,t = xc1,2t,2,τ = xc2,0σ,0,t = xc2,1t,1,t = xc2,2t,2,τ = 1, with all other x variables equal to zero.

To minimise the number of crop movements, we need to use x variables indexed over the single shelves,
xc,gs1,d,s2

∈ N indicating the number of units of crop c ∈ C which are on shelf s1 ∈ S on day d ∈ D (which
is the crop’s g-th growth day) and move to shelf s2 ∈ S on day d+1. Then, we can express the required
goal with the optimisation of the following objective function:

min
∑
c∈C

γc∑
g=1

∑
s1,s2∈Sc

s1 ̸=s2

∑
d∈D

xc,gs1,d,s2
. (6)

We can easily adjust the constraints noting that the following relation between the shelf and the shelf-
type x variables hold:

xc,gt1,d,t2
=

∑
s1∈St1

∑
s2∈St2

xc,gs1,d,s2
,

where St ⊆ S is the set of all shelves of type t ∈ T . We denote the corresponding model as MinM.

3.2.2 Minimise the number of reconfigurations

Changing shelf configurations takes time and is prone to errors. In some applications it is advisable to
keep shelves in stable conditions and move crops around to the shelf that matches its current require-
ments. Minimisation of the following objective function reflects this necessity:

min
∑
t∈T

d̄−2∑
d=1

1

2

∑
k∈K

|yt,d,k − yt,d+1,k| , (7)

where the constant 1/2 reflects the fact that changing the configuration of one shelf changes the value
of two y variables at once. Because no constraint explicitly sets the configuration of an unused shelf,
the objective function will make these shelves keep the configuration they had when last used. In this
way, we correctly count configuration changes and not “switching on/off” of shelves.

We can linearise equation (7) by replacing variables y with variables wt,d,k ∈ N taking, in any optimal
solution, the absolute value of yt,d,k − yt,d+1,k. The objective function becomes

min
∑
t∈T

d̄−2∑
d=1

∑
k∈K

wt,d,k, (8)
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and we can link the w and y variables as follows:

wt,d,k ≥ yt,d,k − yt,d+1,k ∀t ∈ T, ∀d ∈ {1, . . . , d̄− 2}, ∀k ∈ K

wt,d,k ≥ yt,d+1,k − yt,d,k ∀t ∈ T, ∀d ∈ {1, . . . , d̄− 2}, ∀k ∈ K

We denote the corresponding model as MinR.

3.2.3 Minimise unmet demand

If it is not guaranteed that a feasible schedule meeting all demand exists, one can decide to keep part
of it unsatisfied. In this case, we introduce a new variable ucd ∈ N, indicating the amount of unmet
demand for crop c ∈ C on day d ∈ D ∪ {d̄}. We need to modify equations (1) and (3) as follows:∑

t∈Tc

xc,γc

t,d−1,τ + ucd = pcd ∀c ∈ C, ∀d ∈ D ∪ {d̄}, (9)

∑
t∈Tc

xc,0σ,d−γc−1,t + ucd = pcd ∀c ∈ C, ∀d ∈ {γc + 1, . . . , d̄}. (10)

Then, the objective function becomes

min
∑
c∈C

d̄∑
d=1

ωcducd, (11)

where ωcd ∈ R+ is the cost of missing one unit of demand of crop c on day d. We denote the corresponding
model as MinUD.

3.2.4 Minimise the number of shelves used

Moving from the operational to the tactical level, a planner might want to size their VF system and
determine what is the smallest number of shelves needed to satisfy their demand in typical scenarios.
To do so, we can add a dummy configuration k0 ∈ K representing an unused shelf, and a new set of
variables vt ∈ N indicating the number of shelves of type t ∈ T used in the solution. All capacities
associated with k0 will be zero, i.e., qtk0

= 0 for all t ∈ T .

The objective function minimises the number of shelves used:

min
∑
t∈T

vt (12)

and the following linking constraints ensure variables vt take the correct values:

vt ≥
∑

k∈K\{k0}

yt,d,k ∀t ∈ T, ∀d ∈ D. (13)

Because each vt appears in the minimisation objective function, it will take the smallest value allowed
by (13). We denote the corresponding model as MinS.

3.3 Variable fixing

In the following, we describe how to preprocess the model by fixing the value of some of the x variables
to 0, when these variables cannot possibly take any other value in an optimal solution, or when they
correspond to unfeasible conditions.

The x variables determine paths in the time-expanded graph: a variable xc,gt1,d,t2
indicates that we use

the arc from node (t1, d) to node (t2, d+ 1) for some units of crop c and that this arc is the g-th in its

10



corresponding path. To ease the description, then, in the following, we will talk interchangeably of x
variables to fix to 0 or of arcs to prune from the time-expanded graph.

The following variables correspond to arcs that cannot be used in any feasible solution and are therefore
fixed equal to 0:

• We neither consider arcs incoming to the seed vault or outgoing from the produce storage, nor
arcs from the seed vault not going to non-dummy shelves or coming to the produce storage and
not coming from non-dummy shelves:

xc,gt,d,σ = xc,gτ,d,t = 0 ∀d ∈ D′, ∀c ∈ C,∀t ∈ T ′
c,∀g ∈ {0, . . . , γc},

xc,gσ,d,τ = 0 ∀d ∈ D′, ∀c ∈ C, ∀g ∈ {0, . . . , γc}.

• We can remove arcs from the seed vault corresponding to non-zero growth days, or to the produce
storage corresponding to unripe crops, or between shelves for infeasible growth days:

xc,gσ,d,t = 0 ∀d ∈ D′,∀c ∈ C, ∀t ∈ T ′
c, ∀g ∈ {1, . . . , γc},

xc,gt,d,τ = 0 ∀d ∈ D′,∀c ∈ C, ∀t ∈ T ′
c, ∀g ∈ {0, . . . , γc − 1},

xc,gt1,d,t2
= 0 ∀d ∈ D, ∀c ∈ C, ∀t1, t2 ∈ Tc, ∀g ∈ {0, γc}.

• Complementary to the above condition, all arcs with zero growth day have to be outgoing from
the seed vault, and all arcs corresponding to ripe crops have to go to the produce storage.

xc,0t1,d,t2
= 0 ∀t1 ∈ T ′ \ {σ},∀d ∈ D′, ∀t2 ∈ T ′, ∀c ∈ C,

xc,γc

t1,d,t2
= 0 ∀t1 ∈ T ′,∀d ∈ D′, ∀t2 ∈ T ′ \ {τ}, ∀c ∈ C.

• We cannot use arcs corresponding to crops which cannot get ripe on time for the last harvest. To
this end, we let d′c = maxd∈D{d : pcd > 0} be the last day with some demand for crop c ∈ C,
and we set:

xc,gt1,d,t2
= 0 ∀c ∈ C, ∀t1, t2 ∈ Tc, ∀d ∈ {d′c − γc + 1, . . . , d′c},∀g ∈ {0, . . . , γc − (d′c − d)}.

• We can remove arcs corresponding to infeasible growth days (when g is greater than d):

xc,gt1,d,t2
= 0 ∀c ∈ C, ∀t1, t2 ∈ T ′

c, ∀d ∈ D′ : d < γc,∀g ∈ {d+ 1, . . . , γc}.

We can also tighten the upper bound on arcs outgoing from the seed vault and incoming to the produce
storage because the demand limits the number of units that are planted and harvested:

xc,0σ,d−γc−1,t ≤ pcd ∀c ∈ C, ∀t ∈ Tc,∀d ∈ {γc + 1, . . . , d̄},
xc,γc

t,d−1,τ ≤ pcd ∀c ∈ C, ∀t ∈ Tc, ∀d ∈ D ∪ {d̄}.

Finally, we can also fix some of the y variables. First notice that, because we know the demand and the
growth phases of each crop, we also know how many units of crop will require a given configuration on
a given day:

ηdk =

d+γc−1∑
d′=d+1

∑
c∈C s.t.

k=kc,γc−(d′−d−1)

pcd ∀d ∈ D, ∀k ∈ K,

where ηdk ∈ N denotes the number of units of any crop which require configuration k ∈ K on day d ∈ D.
We can then fix to 0 all the y variables corresponding to configurations that we do not need:

yt,d,k = 0 ∀t ∈ T, ∀d ∈ D, ∀k ∈ K : ηdk = 0.
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3.4 Valid inequalities

In this section, we describe valid inequalities to strengthen the linear relaxation of the model.

The first inequality uses parameter ηdk to force a minimum number of variables yt,d,k to take value 1
when we need configuration k on a day d. Let q̄k = maxt∈T {qtk} be the largest capacity associated
with configuration k ∈ K. Each day, then, we need at least ⌈ηdk/q̄k⌉ shelves in configuration k to
accommodate the crops which need that configuration. We reflect this with the following valid inequality:∑

t∈T
yt,d,k ≥ ⌈ηdk/q̄k⌉ ∀d ∈ D, ∀k ∈ K. (14)

Note that this inequality is not valid for model MinUD. In this model, (14) could make a problem
infeasible if there are not enough shelves to accommodate all the crops, when instead the planner could
decide not to meet some demand.

In formulations in which we model each shelf independently, we can add “clique-like” constraints to force
two crops, requiring two different configurations on a given day, to be on separate shelves. For each
day d ∈ D and configuration k ∈ K, consider the set Idk of indices (c, g) giving all crops c that require
configuration k on day d, being at their g-th day of growth. We would like to use clique constraints to
ensure that, on any day d, crops occupying the same shelf s should all be indexed from the same set
Idk. Because the x variables are not binary, it is not possible to enforce such clique constraints, but we
can use a weaker form:∑
(c,g)∈Idk1

∑
s′∈S′

xc,gs,d,s′ +
∑

(c,g)∈Idk2

∑
s′∈S′

xc,gs,d,s′ ≤ max{ηdk1
, ηdk2

} ∀d ∈ D, ∀s ∈ S,∀k1, k2 ∈ K : k1 ̸= k2.

(15)

The left-hand side of equation (15) counts the units of crop on shelf s requiring configuration k1 or k2
on day d. The right-hand side limits this number to the larger of the two cumulative demands (of crops
growing in configurations, respectively, k1 and k2 on day d). For example, if ηdk1

> ηdk2
and we assign

all units of crop requiring configuration k1 on day d to shelf s, then equation (15) forces all units of crop
requiring configuration k2 to be on another shelf on that day. These constraints are as strong as clique
inequalities only when the right-hand side is 1.

3.5 Complexity

We prove that the decision version of the CGPP, denoted as d-CGPP, is NP-complete in the strong
sense by reduction from 3-partition. By “decision version” we mean the problem of determining
whether there exists a feasible solution in which all the demand is satisfied. It is obvious that if we
set all costs ωcd equal to a positive value in (11), then asking for any feasible solution under objectives
MinM, MinR or MinS is equivalent to asking for a solution of cost zero under MinUD. Therefore, a
reduction to d-CGPP suffices for all the four objectives.

An instance of 3-partition is defined by an integer b ∈ N and a set of 3n integers A = {a1, . . . , a3n}
satisfying the following two conditions (i)

∑3n
i=1 ai = n ·b and (ii) b/4 < ai < b/2, ∀i ∈ {1, . . . , 3n}. The

problem asks whether there exists a partition of A into n subsets A1, . . . , An that satisfy
∑

a∈Aj
a =

b, ∀j ∈ {1, . . . , n}. 3-partition is strongly NP-complete (Garey and Johnson 1979).

We now show that 3-partition reduces to d-CGPP. Given any instance of 3-partition, we construct
an instance of CGPP with a time horizon of two days, i.e., D = {1, 2}, and a set of n crops C =
{c1, . . . , cn} which all grow in one day (gc = 1, ∀c ∈ C). All crops have the same demand b which is
due at day 2 (γc = 2 and pc2 = b, ∀c ∈ C).

Each crop requires a different configuration. Thus, there are n configurations k1, . . . , kn with kci1 =
ki, ∀i ∈ {1, . . . , n}. The cabinet consists of 3n identical shelves s1, . . . , s3n and each shelf sj has
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Figure 4: Reduction of 3-partition to d-CGPP.

capacity aj independently from its configuration, that is, qsjk = aj , ∀j ∈ {1, . . . , 3n}, ∀k ∈ K. Finally,
all shelves are compatible with all crops so that δcs = 1, ∀c ∈ C, ∀s ∈ S.

It is helpful to visualise this d-CGPP instance using a complete bipartite graph G (see Figure 4), in
which the vertices on the left (“shelf-vertices”) represent the shelves and those on the right (“crop-
vertices”) represent the crops. Each crop-vertex i has a supply of b units of flow and each shelf-vertex
j has a capacity aj representing the maximum amount of flow that can reach node j. Sending one
unit of flow on edge {i, j} models the assignment of one unit of crop i to shelf j and consumes one
unit of its capacity aj . It is obvious that this d-CGPP instance is feasible if and only if we can send
out all the supplies from the crop-vertices, in integer amounts, while respecting the shelf capacities and
the configuration constraints, i.e., while ensuring that the flow reaching a shelf-vertex j originates from
nodes i that model crops all requiring the same configuration. So, a solution of a d-CGPP instance with
answer yes corresponds to an integer flow in G.

We now claim that d-CGPP admits answer yes to the instance constructed above if and only if the
given 3-partition instance is a yes-instance. Indeed, suppose the d-CGPP instance constructed above
admits answer yes and consider a corresponding flow in G.

1. Because all crops require different configurations, each shelf-vertex must receive flow from at most
one crop-vertex (otherwise the same shelf-vertex would require at least two different configura-
tions).

2. Because b/4 < aj < b/2, ∀j ∈ {1, . . . , 3n}, each crop-vertex must send flow to at least 3 shelf-
vertices (otherwise at least one capacity aj would have to be greater or equal than b/2).

3. Because nb =
∑3n

j=1 aj , each shelf-vertex j must receive exactly aj units of flow (otherwise the
total flow received would be less than the flow sent).

Thus, using 1, 2, and 3, we can conclude that each crop-vertex must send its supply b to exactly three
shelf-vertices. In summary, an answer yes to d-CGPP implies that for each crop-vertex i = 1, ..., n,
we can find a subset of exactly three shelf-vertices j whose capacities aj sum to b, and all these n
subsets are disjoint. This yields the desired partition showing that the given 3-partition instance is a
yes-instance.

On the other hand, suppose that the given 3-partition instance is a yes-instance implying the existence
of a partition of A into n subsets A1, . . . , An that satisfy

∑
a∈Aj

a = b, j = 1, . . . , n. Again, nb =∑3n
j=1 aj and b/4 < aj < b/2, ∀j ∈ {1, . . . , 3n} imply that each subset Ai contains three elements. We

can then assign the b units of flow of each crop-vertex i to the three shelf-nodes with capacities in Ai.
Because the subsets Ai are disjoint, this yields an outflow of b units at each crop-vertex i and an inflow
of aj units at each shelf-vertex j, all coming from the same node i. Therefore, the d-CGPP instance
has answer yes.
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To conclude, we note that problem d-CGPP is in class NP , and that the described reduction is both
polynomial and pseudo-polynomial.

4 Computational experiments

This section describes the computational experiments on an extensive set of benchmark instances (see
Section 4.1 for a description) to compare the performance of the different models (Section 4.2) and to
investigate the structure of the solutions obtained with different objective functions (Section 4.3).

4.1 Benchmark instances and computational environment

We created a set of benchmark instances based on confidential real-life data, which we published online
together with detailed results on an instance basis (see (Santini 2020)). The base data contains infor-
mation about crops and characteristics of commercial VF cabinets, and also includes historical demand
data. It assumes three types of cabinets containing different numbers of stacked shelves: small ones
with seven shelves, medium ones with nine shelves, and large ones with twelve shelves. The shelves can
be of two types (short or tall), and Table 1 shows how shelves are distributed in the cabinets. Note
that we do not report the capacity of the shelves because it varies with the configuration used (more
concretely, it depends on the growth medium).

We have data about six crops, which we denote using letters from A to F. Crop A requires tall shelves,
while the other crops can grow on both short and tall shelves. We handle this crop-to-shelf compatibility
via parameters δct introduced in Section 3. The crops we consider need between 15 and 64 days to grow,
and go through two to five growth phases, with each phase corresponding to the need for a different
configuration. Table 2 reports the crop data in more detail: Column total growth time gives the total
time in days that the crop needs to stay in the cabinet (parameter γc). Column #growth phases is the
number of different growth phases the crop goes through. Column shares config with indicates which
other crops have at least one required configuration in common with the considered crop (recall that
crops requiring the same configuration at the same time can share a shelf). Column shelf type indicates
whether a crop can grow in any shelf or requires a tall one.

The demand pattern is based on historical data and has a constant trend with weekly seasonality and
some spikes on particular days (for example, holidays). Given the base data and this historical demand
pattern, we generate new instances varying the number of crops considered and the time horizon length,
and using a demand multiplier to simulate different demand situations:

• We consider all possible combinations of crops, starting from instances with demand for only
one crop, then considering the

(
6
2

)
possible ways of selecting two crops, etc. up to instances with

demand for all six crops.

• For each crop combination, we generate instances for the large, the medium, and the small cabinet.

• For each choice of crops and cabinet, we generate six instances by multiplying the base demand
by a factor of 1.0, 1.2, 1.4, 1.6, 1.8, 2.0.

cabinet #shelves #short shelves #tall shelves
small 7 5 2
medium 9 6 3
large 12 8 4

Table 1: Features of the three types of cabinet considered. Column cabinet is the cabinet type. Col-
umn #shelves report the total number of shelves in the cabinet, which is made up of the number of
short and tall shelves, reported respectively in columns #short shelves and #tall shelves.
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crop total growth time #growth phases shares config with shelf type
A 64 3 — tall
B 15 2 C, F short, tall
C 15 2 B, F short, tall
D 44 5 F short, tall
E 35 4 — short, tall
F 35 4 B, C, D short, tall

Table 2: Real-life data about the crops that we used as a base for instance generation. Column crop
is the crop identifier. Column total growth time gives the total time in days that the crop needs to
be in the cabinet (quantity γc). Column #growth phases is the number of different growth phases the
crop goes through; each growth phase requires a different configuration. Column shares config with
indicates which other crops have at least one required configuration in common with the considered
crop (recall that crops which have common configurations can share the same shelf). Column shelf type
states whether a crop can grow in any shelf or requires a tall one.

• For each choice of the three above parameters, we consider time horizons of 60, 80, and 100 days.

Given 26 − 1 = 63 possible ways to choose a crop combination (with at least one crop), 3 cabinets, 6
demand multiplier values, and 3 time horizon lengths, we have a total of 3402 instances. Removing
instances with a time horizon of 60 but containing crop A, which needs 64 days to grow, leaves us with
2826 instances.

While all instances are feasible for model MinUD, this is not true for the other models (MinM, MinR
and MinS). Therefore, the first aim of our computational study was to determine which of the 2826
instances are feasible for the other three models (note that an instance is either feasible for all three or
none of the models). We coded the models using IBM ILOG Optimization Programming Language and
ran them on a cluster equipped with Intel Xeon processors at 2.4GHz, reserving four cores and 4GB of
RAM for each run. We used the solver CPLEX 12.7 with a time limit of 1 hour and default settings.

At the end of the runs, we determined that 1441 instances are feasible and 1382 are provably infeasible.
We were not able to establish the feasibility of the remaining 3 instances because CPLEX neither proved
them infeasible nor produced a feasible solution within the time limit. Table 3 reports the relationship
between the instance generation parameters and the number of feasible instances. Increasing the number
of crops tends to decrease the number of feasible instances because crop demands are independent of
each other: for example, instances with six crops have roughly twice the demand of instances with three
crops. Unsurprisingly, larger cabinets and lower demands lead to a higher number of feasible instances.
Finally, longer time horizons correspond to fewer feasible instances because it only takes one day with
a surge in demand which the system cannot accommodate to render the whole instance infeasible; a
longer time horizon corresponds to more opportunities for one such day.

#crops cabinet demand mult time horizon
value %feas value %feas value %feas value %feas

1 58.50 small 41.61 1.0 66.03 60 82.80
2 61.39 medium 50.42 1.2 64.54 80 51.94
3 54.33 large 61.04 1.4 57.96 100 34.48
4 41.90 1.6 46.50
5 26.07 1.8 43.74
6 19.44 2.0 27.39

Table 3: Percentage of feasible instances when varying each of the four instance generation parameter.
Column value indicates the parameter value, while column %feas reports the number of feasible instances
in percent.
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4.2 Performance of the models

In this section, we investigate the performance of each of the four models and analyse the effect of
the instance parameters (number of crops, cabinet type, demand multiplier, time horizon) on this
performance. Table 4 reports the results of the models based on the set of 1441 instances that we
proved to be feasible for all models. The five parts of the table show the results in aggregated form
(grouped according to different settings of the instance parameters and as overall aggregate). For each
value of instance parameter, column instances reports the number of instances aggregated in the row.
For each model, column %feas reports the percentage of instances for which the respective model found
a feasible solution within the 1-hour time limit. Column %opt reports the percentage of instances solved
to optimality, column %gap the average optimality gap in percent, and column time the average runtime
of CPLEX in seconds. Columns %gap and time are computed based on the instances with a feasible
solution found by the respective model within the time limit.

Of the stricter models, i.e., those models in which demand has to be met, MinM shows the worst
performance. It provides the fewest instances with a feasible solution (in fact, for the large majority of
instances, CPLEX cannot produce a feasible solution within the time limit), the largest optimality gaps,
and the highest runtimes. This is due to the fact that, in this model, we cannot aggregate shelves into
shelf types, leading to considerably more variables and constraints. A higher number of crops (beyond
four), larger cabinets, higher demands, and longer time horizons have a clear negative effect on the
ability of the model to find feasible solutions. The effect of the instance parameters on solution quality
is rather small and not always monotonic, which can be explained by the generally weak performance
of the model on nearly all instances.

With regards to finding feasible solutions, we observe a clear improvement for model MinR and again for
MinS. However, even for MinS, instances exist for which no feasible solution can be determined within
the time limit. This highlights the necessity of alternative solution approaches to provide the planner
with at least one feasible solution to implement. While the instance parameters have only a very slight
impact on the feasibility of solutions for MinS, for MinR, a higher number of crops, larger cabinets, and
higher demands clearly increase feasibility (the effect of longer time horizons is unclear). A possible
explanation is that larger cabinets correspond to a larger solution space, which can be harder to explore
but can make it easier to find a feasible solution.

Concerning solution quality, MinR finds more optimal solutions within clearly shorter runtimes than
MinS while average gaps are slightly larger. The performance difference between these two models
strongly depends on instance parameters. A higher number of crops clearly improves solution quality
for the former model while strongly decreasing it for the latter. This is due to the poor behaviour of
variables y in the linear relaxation of all models, which is caused by capacity and linking constraints (2).
To better illustrate the impact of these constraints, in Appendix B we present an example of how
constraints (2) lead to a linear relaxation solution with a 100% gap to optimal integer solution. The
poor behaviour of (2) is exacerbated when shelves operate near full capacity and few shelves can be
empty, e.g., when considering a large number of crops or longer time horizons. In this case, many y
variables will be non-zero and will take fractional values close to, but strictly less than one in the linear
relaxation, thus requiring more branching. In model MinS, the objective function indirectly penalises
variables y through variables v, which therefore tend to assume fractional values more often, leading
to worse performance. Larger cabinets have a slightly positive effect on MinR and a slightly negative
effect on MinS; higher demands increase solution quality for both models.

Contrary to these observations, the less strict model MinUD always produces feasible solutions with
ease (for example, a solution not growing anything is feasible). It also shows the highest percentage of
instances solved to optimality and the lowest average gaps, confirming that solving the model with a
commercial solver is a valid approach to the CGPP when minimising unmet demand. A higher number
of crops and larger cabinets decrease solution quality while the effect of higher demands and longer time
horizons is small and unclear.

If for the other objectives, MinM, MinR or MinS, instances are infeasible or it is not possible to find
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a feasible solution in reasonable runtime, the following simple strategy can be used to provide decision
support. We first solve the MinUD model to obtain a subset of crops which are guaranteed to satisfy
the capacity constraints of the VF system. Then, the original objective function can be used on an
instance only containing the crops selected by MinUD. If it is still hard to find a feasible solution of the
problem instance, the solution produced by model MinUD can be used as a last resort.

4.3 Effect of different objective functions

In this section, we investigate the impact of optimising with regards to a certain objective function on
the structure of the resulting solutions. More precisely, we want to see to what extent the characteristics
stipulated by the other objective functions can already be witnessed in the solutions, i.e., whether the
studied objectives are synergic or contradictory. To this end, we recorded the number of crop movements,
reconfigurations, and used shelves in the solutions of all models. Figures 5a to 5c report the information
about, respectively, the number of reconfigurations per shelf, the number of movements per unit of crop,
and the fraction of shelves used in the solutions found by the different models.

In all the figures, we note that only the model minimising the given objective achieves satisfactory
results. In Figure 5a, the models which do not minimise the number of reconfigurations give solutions
with a median of up to twenty reconfigurations per shelf and model; MinS even has outliers with up
to 60 reconfigurations per shelf. Intuitively, indeed, if a planner wants to minimise the number of used
shelves, he has to juggle as many configurations as possible in the few active shelves, which makes
these two objectives contradictory. We can observe the same effect in Figure 5b: when minimising the
number of shelves the planner has to frequently move around crops. Finally, Figure 5c shows that when
shelf minimisation is not explicitly demanded by the objective function, the models try to use as many
shelves as possible: all models except MinS have median shelf usage of 100%.

To attempt to reconcile the objectives MinR and MinS, we investigate the effect of using a hierarchical
objective which first minimises the number of reconfigurations and then the number of shelves used.
The hierarchical objective reduces average shelf usage over all instances from 93.2% (without hierar-
chical objective) to 92.4%. This shows that the objectives are inherently conflicting, which makes a
multi-objective approach compelling for practitioners, who want to achieve different desirable objectives
simultaneously. The planner can clearly not rely on the assumption that optimising with regards to one
objective will produce solutions of acceptable quality with respect to any other objective.

5 Conclusions

In this paper, we present four mathematical models for planning the growth of crops in a vertical
farming system, which are strengthened using variable fixing and valid inequalities. The models mainly
differ in their objective to minimise, respectively, movements, reconfigurations, shelf usage, or unmet
demand. Numerical experiments on a large set of benchmark instances based on real-world data show
that the performance of the models when solved with a standard solver is diverse and strongly dependent
on instance data. In particular, when minimising the number of crop movements, we cannot solve to
optimality more than 97% of the instances, and the average gaps are above 84%. By contrast, average
gaps are below 4% for the other objectives. This suggests that developing ad-hoc algorithms to minimise
the number of movements is an interesting area for future research.

We also find that none of the objectives steers the solutions to be acceptable with regards to any of the
other objectives, which makes multi-objective optimisation techniques another fruitful avenue for future
investigations. In this work, we assume that, because the crops are highly perishable, their growth
should complete on the same day in which there is demand for them. This is particularly true for crops
currently popular for VF systems, such as basil, chives, or leafy greens. As VF technology improves,
however, the range of crops which one can grow in a controlled-condition cabinet will increase. In this
case, a promising research direction is to allow some crop units to be harvested before their due date
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(a) Number of reconfigurations per shelf. (b) Number of crop movements per unit of crop grown
in the system.

(c) Share of shelves used.

Figure 5: Each box spans the second and the third quartiles, with whiskers extending to the rest of the
distribution (excluding outliers). The horizontal black line inside each box depicts the median. Each
dot represents one instance.
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thereby introducing flexibility in the time when their growth is started. This clearly adds a scheduling
component to our model. Such a research direction would benefit the area of machine scheduling in
general, because there are currently no other models allowing such a great flexibility in reconfiguring
machines and moving tasks between machines.
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A.1 Minimise the number of movements

min
∑
c∈C

γc∑
g=1

∑
s1,s2∈Sc

s1 ̸=s2

∑
d∈D

xc,gs1,d,s2
(16)

s.t.
∑
s∈Sc

xc,γc

s,d−1,τ = pcd ∀c ∈ C, ∀d ∈ D ∪ {d̄} (17)

∑
s2∈S′

∑
c∈C

δcs1=1
δcs2=1

∑
g∈{1,...,γc}

kc,g=k

xc,gs1,d,s2
≤ qs1k · ys1,d,k ∀s1 ∈ S, ∀d ∈ D, ∀k ∈ K (18)

∑
s∈Sc

xc,0σ,d−γc−1,s = pcd ∀c ∈ C, ∀d ∈ {γc + 1, . . . , d̄} (19)

∑
s2∈T ′

c

xc,gs2,d−1,s1
=

∑
s2∈T ′

c

xc,g+1
s1,d,s2

∀c ∈ C, ∀g ∈ {0, . . . , γc}, ∀s1 ∈ Sc,∀d ∈ D (20)

∑
k∈K

ys,d,k ≤ 1 ∀s ∈ S,∀d ∈ D (21)

xc,gs1,d,s2
∈ N ∀c ∈ C, ∀s1, s2 ∈ S′

c, ∀d ∈ D′, ∀g ∈ {0, . . . , γc}
(22)

ys,d,k ∈ {0, 1} ∀s ∈ S′
c, ∀d ∈ D′, ∀k ∈ K (23)

A.2 Minimise the number of reconfigurations

min
∑
t∈T

d̄−2∑
d=1

∑
k∈K

wt,d,k (24)

s.t.
∑
t∈Tc

xc,γc

t,d−1,τ = pcd ∀c ∈ C,∀d ∈ D ∪ {d̄} (25)

∑
t2∈T ′

∑
c∈C

δct1=1
δct2=1

∑
g∈{1,...,γc}

kc,g=k

xc,gt1,d,t2
≤ qt1k · yt1,d,k ∀t1 ∈ T, ∀d ∈ D, ∀k ∈ K (26)

∑
t∈Tc

xc,0σ,d−γc−1,t = pcd ∀c ∈ C,∀d ∈ {γc + 1, . . . , d̄} (27)

∑
t2∈T ′

c

xc,gt2,d−1,t1
=

∑
t2∈T ′

c

xc,g+1
t1,d,t2

∀c ∈ C, ∀g ∈ {0, . . . , γc},∀t1 ∈ Tc,∀d ∈ D (28)

∑
k∈K

yt,d,k ≤ nt ∀t ∈ T, ∀d ∈ D (29)

wt,d,k ≥ yt,d,k − yt,d+1,k ∀t ∈ T, ∀d ∈ {1, . . . , d̄− 2}, ∀k ∈ K (30)
wt,d,k ≥ yt,d+1,k − yt,d,k ∀t ∈ T, ∀d ∈ {1, . . . , d̄− 2}, ∀k ∈ K (31)
xc,gt1,d,t2

∈ N ∀c ∈ C, ∀t1, t2 ∈ T ′
c, ∀d ∈ D′, ∀g ∈ {0, . . . , γc} (32)

yt,d,k ∈ N ∀t ∈ T ′
c, ∀d ∈ D′, ∀k ∈ K (33)

wt,d,k ∈ N ∀t ∈ T, ∀d ∈ {1, . . . , d̄− 2}, ∀k ∈ K (34)
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A.3 Minimise unmet demand

min
∑
c∈C

d̄∑
d=1

ωcducd (35)

s.t.
∑
t∈Tc

xc,γc

t,d−1,τ + ucd = pcd ∀c ∈ C,∀d ∈ D ∪ {d̄} (36)

∑
t2∈T ′

∑
c∈C

δct1=1
δct2=1

∑
g∈{1,...,γc}

kc,g=k

xc,gt1,d,t2
≤ qt1k · yt1,d,k ∀t1 ∈ T, ∀d ∈ D, ∀k ∈ K (37)

∑
t∈Tc

xc,0σ,d−γc−1,t + ucd = pcd ∀c ∈ C,∀d ∈ {γc + 1, . . . , d̄} (38)

∑
t2∈T ′

c

xc,gt2,d−1,t1
=

∑
t2∈T ′

c

xc,g+1
t1,d,t2

∀c ∈ C, ∀g ∈ {0, . . . , γc},∀t1 ∈ Tc,∀d ∈ D (39)

∑
k∈K

yt,d,k ≤ nt ∀t ∈ T, ∀d ∈ D (40)

xc,gt1,d,t2
∈ N ∀c ∈ C, ∀t1, t2 ∈ T ′

c, ∀d ∈ D′, ∀g ∈ {0, . . . , γc} (41)
yt,d,k ∈ N ∀t ∈ T ′

c, ∀d ∈ D′, ∀k ∈ K (42)
ucd ∈ N ∀c ∈ C, ∀d ∈ D ∪ {d̄} (43)

A.4 Minimise the number of shelves used

min
∑
t∈T

vt (44)

s.t.
∑
t∈Tc

xc,γc

t,d−1,τ = pcd ∀c ∈ C,∀d ∈ D ∪ {d̄} (45)

∑
t2∈T ′

∑
c∈C

δct1=1
δct2=1

∑
g∈{1,...,γc}

kc,g=k

xc,gt1,d,t2
≤ qt1k · yt1,d,k ∀t1 ∈ T, ∀d ∈ D, ∀k ∈ K (46)

∑
t∈Tc

xc,0σ,d−γc−1,t = pcd ∀c ∈ C,∀d ∈ {γc + 1, . . . , d̄} (47)

∑
t2∈T ′

c

xc,gt2,d−1,t1
=

∑
t2∈T ′

c

xc,g+1
t1,d,t2

∀c ∈ C, ∀g ∈ {0, . . . , γc},∀t1 ∈ Tc,∀d ∈ D (48)

∑
k∈K

yt,d,k ≤ nt ∀t ∈ T, ∀d ∈ D (49)

vt ≥
∑

k∈K\{k0}

yt,d,k ∀t ∈ T, ∀d ∈ D (50)

xc,gt1,d,t2
∈ N ∀c ∈ C, ∀t1, t2 ∈ T ′

c, ∀d ∈ D′, ∀g ∈ {0, . . . , γc} (51)
yt,d,k ∈ N ∀t ∈ T ′

c, ∀d ∈ D′, ∀k ∈ K (52)
vt ∈ N ∀t ∈ T (53)

B Example of solution of the continuous relaxation of model MinM

A disadvantage of the proposed formulations is their weak linear relaxation, mainly due to the presence
of constraints (2). These inequalities serve both as capacity constraints and as linking constraints for
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the x- and y-variables, but they provide a weak linking between these variables once the integrality
requirements are removed.

d = 0 d = 1 d = 2 d = 3

σ

shelf 2

shelf 1

τ

k1

k2

k3 k4

(a) Optimal solution for model MinM.

d = 0 d = 1 d = 2 d = 3

σ

shelf 2

shelf 1

τ

1
2k1 +

1
2k3

k2

k4

(b) Optimal solution of the continuous relaxation of
model MinM.

Figure 6: Example instance in which the continuous relaxation of model MinM would show a gap of
100%.

To illustrate this point consider model MinM and an instance with two identical shelves of capacity 2
and three crops:

• crop c1 is planted on day 0 and grows for two days, in configuration k1 on the first day and in k2
on the second;

• crop c2 is also planted on day 0 and grows for two days, in configuration k3 on the first day and
in k2 on the second;

• crop c3 is planted on day 1 and grows for one day in configuration k4.

Each crop has demand 1 only on the third day. Figure 6a shows an optimal solution to this instance. In
the figure, the movements of crop c1 are visualised as dashed arrows, those of crop c2 as dotted arrows
and those of crop c3 as solid arrows. Note that the objective value of this solution is 1, because crop
c2 moves from shelf s2 to s1 in day 2. The value of the non-zero variables in this optimal solution is:
xc1,0σ,0,s1

= xc1,1s1,1,s1
= xc1,2s1,2,τ

= xc2,0σ,0,s2
= xc2,1s2,1,s1

= xc2,2s1,2,τ
= xc3,0σ,1,s2

= xc3,1s2,2,τ
= 1 and ys1,1,k1

= ys1,2,k2
=

ys2,1,k3
= ys2,2,k4

= 1.

On the other hand, if we consider the continuous relaxation, we can obtain a solution with an objective
value equal to zero thus yielding an integrality gap of 100%. Such a solution is shown in Figure 6b.
Here, shelf s1 can be assigned half configuration k1 and half configuration k3 on day 1 because variables
ys1,1,k1

and ys1,1,k3
can both be given a value 0.5. Since the shelf capacity is 2 it can accommodate

both crops c1 and c2 simultaneously and with these fractional values for variables ys1,1,k1
and ys1,1,k3

constraints (2) are indeed satisfied.

Overall, the value of the non-zero variables in the optimal solution to the linear relaxation is: xc1,0σ,0,s1
=

xc1,1s1,1,s1
= xc1,2s1,2,τ

= xc2,0σ,0,s1
= xc2,1s1,1,s1

= xc2,2s1,2,τ
= xc3,0σ,1,s2

= xc3,1s2,2,τ
= 1, ys1,1,k1

= ys1,1,k3
= 0.5 and

ys1,2,k2
= ys2,2,k4

= 1. As noted above, this solution does not violate constraints (2), nor the other linear
constraints of the model.
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