
A comparison of acceptance criteria for the Adaptive Large Neighbour-
hood Search metaheuristic

This preprint is available at https://santini.in/

A final version of this preprint is published as follows:

Author 1: Alberto Santini

Author 2: Stefan Røpke

Author 3: Lars Magnus Hvattum

Journal: Journal of Heuristics n. 5 (vol. 24), pp. 783–815 (2018).

The final version is available at:
https://link.springer.com/article/10.1007/s10732-018-9377-x

You can cite the final version of this paper as:

@article{Santini2018,
title={A comparison of acceptance criteria for the Adaptive Large Neighbourhood Search

metaheuristic},
journal={Journal of Heuristics},
author={Santini, Alberto and Røpke, Stefan and Hvattum, Lars Magnus},
volume={24},
number={5},
pages={783--815},
doi={10.1007/s10732-018-9377-x},
year={2018}

}

https://santini.in/
https://link.springer.com/article/10.1007/s10732-018-9377-x

A comparison of acceptance criteria for the Adaptive Large
Neighbourhood Search metaheuristic

Alberto Santini1, Stefan Røpke2, and Lars Magnus Hvattum3

1Univeristat Pompeu Fabra, Barcelona, Spain∗
2Department of Management Science, Danish Technical University, Denmark†

3Molde University College, Norway‡

March 10, 2021

Abstract

Adaptive Large Neighborhood Search (ALNS) is a useful framework for solving difficult combi-
natorial optimisation problems. As a metaheuristic, it consists of some components that must be
tailored to the specific optimisation problem that is being solved, while other components are prob-
lem independent. The literature is sparse with respect to studies that aim to evaluate the relative
merit of different alternatives for specific problem independent components. This paper investigates
one such component, the move acceptance criterion in ALNS, and compares a range of alternatives.
Through extensive computational testing, the alternative move acceptance criteria are ranked in
three groups, depending on the performance of the resulting ALNS implementations. Among the
best variants, we find versions of criteria based on Simulated Annealing, Threshold Acceptance,
and Record-to-Record Travel, with a version of the latter being consistently undominated by the
others. Additional analyses focus on the search behavior, and multiple linear regression is used to
identify characteristics of search behavior that are associated with good search performance.

1 Introduction

The Adaptive Large Neighborhood Search (ALNS) metaheuristic (Ropke and Pisinger 2006b) has be-
come a popular template for implementing heuristic solution methods, especially for vehicle routing
applications (Demir, Bektaş, and Laporte 2012; Grangier et al. 2016; Hemmelmayr, Cordeau, and
Crainic 2012; Muller, Spoorendonk, and Pisinger 2012; Ribeiro and Laporte 2012). The metaheuristic
allows the use of problem specific knowledge when specifying operators for partially destroying and
then repairing a solution to an optimisation problem. Problem independent components of the ALNS
dictate how different destroy and repair operators are used and control the search trajectory. One
presumably important component that influences the search trajectory is the move acceptance criterion.
In the original ALNS, this criterion was based on Simulated Annealing (Ropke and Pisinger 2006b),
whereas earlier work on Large Neighborhood Search (LNS) by (Shaw 1998) accepted only improving
solutions. Recently, some implementations have used the Record-to-Record Travel acceptance criterion
instead (Lei, Laporte, and Guo 2011), and in one case it was found to perform better than the standard
Simulated Annealing criterion (Hemmati and Hvattum 2017).

Currently, however, there are no guidelines available to recommend one acceptance criterion over another.
This paper intends to fill this gap by investigating a large number of different move acceptance criteria
by subjecting them to extensive computational testing. Through empirical experiments we attempt to
1) quantify the effect on performance from using different acceptance criteria, 2) suggest which move

∗alberto.santini@upf.edu
†ropke@dtu.dk
‡hvattum@himolde.no

1

acceptance criterion is better suited for an implementation of ALNS, and 3) attempt to measure in
which way the move acceptance criteria influence the search behaviour.

In particular, two main hypotheses can be tested with respect to the choice of acceptance criterion
in ALNS. The first hypothesis is that the standard Simulated Annealing acceptance criterion is the
best criterion, in that it leads to better solutions within a standard running time than when using any
other criterion. This hypothesis is reasonable based on the fact that most publications describing ALNS
implements this acceptance criterion. The second hypothesis is that the influence of the acceptance
criterion on the performance and behaviour of the search is negligible, that is, the effect size is small
compared to random variations in search performance.

To test these hypoteses, we used a vast test bed of instances, from three well-known problems. The first
is the Capacitated Vehicle Routing Problem, concerned with the optimal delivery of goods to customers
using a fleet of capacitated vehicles. The second is the Capacitated Minimum Spanning Tree Problem,
where we have to find a spanning tree in a graph minimising the cost of the included edges, under a
capacity constraint on its sub-trees. The third one is the Quadratic Assignment Problem: an extension
of the classical assignment problem, where costs are associated with pairs of simultaneous assignments.
See Section 4 for a more detailed description.

The remainder of this paper is structured as follows. In Section 2 we give a brief description of the
ALNS metaheuristic; Section 3 lists the acceptance criteria we are comparing in this work. Sections 4
and 5 describe the test problems and give details of the implementation of ALNS used to solve them.
Section 6 explains the process with which we tuned the parameters related to the acceptance criteria.
We report computational results in Section 7 and finally summarise our findings in the conclusions, in
Section 8.

2 The ALNS Framework

ALNS was introduced by (Ropke and Pisinger 2006b) and extends the LNS metaheuristic first proposed
by (Shaw 1998). In the LNS, we consider a neighbourhood which is implicitly defined by the sequential
application of a destroy and a repair method. A destroy method turns a feasible solution into an
incomplete solution, by destroying parts of it; a repair method then takes an incomplete solution and
turns it into a feasible solution. In ALNS, we consider a collection of destroy and repair methods. A
neighbourhood is implicitly defined for each possible pair of destroy and repair methods, assuming that
any repair method is able to reconstruct a solution from an incomplete solution created by any destroy
method.

For example, a destroy method for a Vehicle Routing Problem could remove a certain number of cus-
tomers from their respective routes. A repair method could then try to re-insert the missing customers,
trying all feasible positions and choosing the one that minimises the total cost.

Some element of randomness is commonly introduced in the process. This element is usually included
in the destroy method, by randomising the choice of which parts of the solution to destroy. In most
implementations, the repair methods aim to, myopically, obtain the best possible solution starting from
an incomplete solution; however, it is also possible to introduce some stochastic element in the repair
methods. At each iteration, the destroy and repair methods are chosen based on their past performance,
reflected by a score: the methods are picked with a roulette-wheel selection, where the probabilities are

2

directly proportional to the scores. Initially all methods are assigned the same score.

Algorithm 1: General Framework
Input : Initial solution: x0

Input : Initial acceptance parameters
Input : Initial destroy/repair scores

1 x = x0 /* Initialise current solution */
2 x∗ = x0 /* Initialise best solution */
3 i = 1 /* Iteration count */
4 while i ≤ K do
5 Choose a destroy method d
6 Choose a repair method r
7 x′ ← r(d(x))
8 if Accept new solution x′ then
9 x = x′

10 end
11 if f(x) < f(x∗) then
12 x∗ = x
13 end
14 Update(Destroy/repair scores)
15 Update(Acceptance parameters)
16 i = i+ 1

17 end
18 return x∗

A synthetic formulation of the ALNS algorithm is given in Algorithm 1. Once the destroy and repair
methods are chosen, a new solution is produced. The algorithm then has to decide whether or not
to replace the current solution with the one newly produced — thus accepting or rejecting the new
solution. The criterion used to decide whether or not the new solution is accepted is therefore called
the acceptance criterion. The criterion itself can base the acceptance decision on some internal state,
which can vary during the course of the solution process. For example, a Simulated Annealing (SA)
criterion has been the most popular choice when implementing ALNS: in the case of SA, the varying
state is represented by the temperature, which starts at a high value and exponentially decreases during
the execution of the algorithm.

When the new solution improves on the global best solution, the scores of the corresponding destroy
and repair methods are increased by a relatively large value; otherwise, if the new solution is accepted,
their scores are increased by a relatively smaller value; otherwise, if the new solution is not accepted,
their scores are decreased.

In our implementation, the solution process ends when we reach a predetermined number of iterations.
Other criteria that have been used include a hard time limit, and a predetermined number of consecutive
iterations without improvement.

The LNS and ALNS has similarities to the method known as iterated greedy, first proposed by (Ruiz
and Stützle 2007). That first implementation of iterated greedy only uses a single destroy method
(based on random removal) and a single repair method. As opposed to ALNS, it explicitly includes
an optional local search improvement phase. (F. Glover 2000) points out that alternating constructive
and destructive phases corresponds to a one-sided strategic oscillation. Strategic oscillation refers to a
process where a search is strategically driven to go back and forth between the set of feasible solutions
and a set of infeasible solutions (F. Glover and Laguna 1997). In this context, destroy methods create
infeasible solutions, and the repair methods drive the resulting infeasible solution towards a feasible
solution. Finally, the ruin and recreate heuristic, proposed in (Schrimpf et al. 2000) is also very similar
to LNS and ALNS in the sense that it improves an initial solution by repeatedly destroying (ruining)
and repairing (recreating) the current solution.

3

3 Acceptance Criteria

In this section we describe the different acceptance criteria tested within the ALNS framework. In the
following we denote by N(x) the neighbourhood of a solution x, defined by a selection of destroy and
repair heuristics. The cost of a solution x is denoted by f(x). We refer to the current solution as x;
when it is important to specify which iteration of the ALNS algorithm we are considering, we use the
notation xi, where i is the iteration number. The new solution produced by the destroy and repair
heuristics in N(x) is denoted by x′, while we indicate the best encountered solution as x∗. The initial
solution is denoted by x0. Finally, K is the total number of iterations. In the pseudo-code, we will
assume that we are minimising the objective function f(·).

The acceptance criteria depend on a given number of parameters, that in our case ranges from 0 to
4. Some acceptance criteria make use of an internal state, which varies during the solution process,
and we assume that the internal state is updated at each iteration of the ALNS algorithm. Alternative
criterion-based approaches exist in the literature. For example, one could decide to update certain
values of the internal state only when there is apparent convergence with the current settings. Since
these strategies cannot be applied uniformly across all the acceptance criteria, we resort to our simpler
approach.

Since we are dealing with problem instances that are very diverse in nature and size, we update the
internal state used by the acceptance criteria using information relative to the cost of either the best or
the current solution, rather than absolute numbers.

3.1 Hill Climbing

Hill Climbing (HC), presented in Algorithm 2, accepts a new solution iff it is better than the current
one.

Algorithm 2: Hill Climbing
Input : Initial solution: x0

1 x = x0 /* Initialise current solution */
2 i = 1 /* Initialise iteration count */
3 while i ≤ K do
4 Pick x′ ∈ N(x)
5 if f(x′) ≤ f(x) then
6 x = x′

7 end
8 i = i+ 1

9 end
10 return x

3.2 Random Walk

At the other end of the spectrum from HC, there is Random Walk (RW), presented in Algorithm 3. In
this case, we accept all new solutions.

3.3 Late Acceptance Hill Climbing

This criterion, presented in Algorithm 4, is similar to HC, but the new solution is compared to what was
the current solution L iterations ago. In order to implement this acceptance criterion, it is necessary to
keep a circular list of length L that stores the last L current solutions. The criterion was first introduced
by (Burke and Bykov 2008; Burke and Bykov 2012).

4

Algorithm 3: Random Walk
Input : Initial solution: x0

1 x = x0 /* Initialise current solution */
2 x∗ = x0 /* Initialise best solution */
3 i = 1 /* Initialise iteration count */
4 while i ≤ K do
5 Pick x′ ∈ N(x)
6 x = x′

7 if f(x) < f(x∗) then
8 x∗ = x
9 end

10 i = i+ 1

11 end
12 return x∗

Algorithm 4: Late Acceptance Hill Climbing
Input : Initial solution: x0

Input : List length: L
1 x = x0 /* Initialise current solution */
2 x∗ = x0 /* Initialise best solution */
3 x−1, . . . , x−L+1 = x0 /* Initialise list */
4 i = 1 /* Iteration count */
5 while i ≤ K do
6 Pick x′ ∈ N(x)
7 if f(x′) ≤ f(xi−L) then
8 x = x′

9 end
10 if f(x) < f(x∗) then
11 x∗ = x
12 end
13 i = i+ 1

14 end
15 return x∗

Parameters related to acceptance: This acceptance criterion only uses parameter: the length L of the
look-back list.

Variants: The standard version of this acceptance criterion would not accept the new solution in case
f(xi−L) < f(x′) < f(x). As proposed by (Burke and Bykov 2012), the criterion can be emended to
accept x′ if either it is better than the current solution L iterations ago, or it is better than the current
solution at the present iteration. In this variant, called Improved LAHC, we edit line 7 to become
f(x′) ≤ f(xi−L) ∨ f(x′) ≤ f(x) (where ∨ denotes logical or).

3.4 Threshold Acceptance

With the Threshold Acceptance (TA) criterion introduced by (Dueck and Scheuer 1990) and presented
in Algorithm 5, a new solution is accepted if the gap between the new and the current solution is smaller
than a threshold T . The threshold starts at a large value and decreases at every iteration.

Parameters related to acceptance: The user-provided parameters are the start threshold T start and the
end threshold T end. The initial threshold T is set to its start value. At every iteration, the threshold is
updated to move towards its end value.

Variants: We tested two rates of decay: linear and exponential. In the first case, the Linear Threshold
Acceptance method, we update the threshold as: T ← T − (T start− T end)/K. In the second case, the
Exponential Threshold Acceptance method, we update it as T ← T · (T end/T start)1/K .

5

Algorithm 5: Threshold Acceptance
Input : Initial solution: x0

Input : Initial threshold: T
1 x = x0 /* Initialise current solution */
2 x∗ = x0 /* Initialise best solution */
3 i = 1 /* Iteration count */
4 while i ≤ K do
5 Pick x′ ∈ N(x)

6 if f(x′)−f(x)
f(x′) < T then

7 x = x′

8 end
9 if f(x) < f(x∗) then

10 x∗ = x
11 end
12 Update(T)
13 i = i+ 1

14 end
15 return x∗

3.5 Simulated Annealing

Simulated Annealing (SA), presented in Algorithm 6, is the acceptance criterion most commonly used
within the ALNS framework. It was originally introduced by (Kirkpatrick, Gelatt, and Vecchi 1983) and
it was used with the ALNS since its debut by (Ropke and Pisinger 2006b). The basic idea behind SA is
similar to TA: moves to solutions that are worse than the current one are allowed, but the probability
of doing so depends on the state of the search and on the gap between f(x) and f(x′).

Algorithm 6: Simulated Annealing
Input : Initial solution: x0

Input : Initial temperature: T
1 x = x0 /* Initialise current solution */
2 x∗ = x0 /* Initialise best solution */
3 i = 1 /* Iteration count */
4 while i ≤ K do
5 Pick x′ ∈ N(x)

6 if rand(0, 1) ≤ e
f(x)−f(x′)

T then
7 x = x′

8 end
9 if f(x) < f(x∗) then

10 x∗ = x
11 end
12 Update(T)
13 i = i+ 1

14 end
15 return x∗

Parameters related to acceptance: The probability that a new solution of value f(x′) is accepted is

e
f(x)−f(x′)

T

Given a reference solution value z, if we wanted to accept with probability p ∈ [0, 1] new solutions of
cost f(x′) = hz, we would have to set the temperature T according to:

p = e
z−hz

T ⇒ ln p =
z(1− h)

T
⇒ T =

z(1− h)

ln p

If we use the reference probability p = 0.5 this becomes

T =
z(1− h)

ln 0.5 (1)

6

We can therefore use two user-provided parameters hstart, hend that define how much worse solutions we
accept with probability 0.5 at the beginning and the end of the procedure. The corresponding start and
end temperatures T start and T end can then be calculated using (1).

Variants: It remains an open question how to choose the reference value z. One option is to use the initial
solution: z = f(x0). The parameter T should then be initialised as T start and then updated at every
iteration, as T ← T · (T end/T start)1/K . We refer to this method, introduced as the default acceptance
criterion for ALNS by (Ropke and Pisinger 2006b), simply as Exponential Simulated Annealing. A
variant of this method has been proposed by (Pisinger and Ropke 2007), where the authors noticed that
the start and end temperature values can be sensitive to the size of the instance. How this size is defined
is problem dependent (for example, it can be the number of customers in a Vehicle Routing Problem). In
the following we just assume that it is a positive real number s ≥ 1 . In the variant of SA that we called
Instance-Scaled Exponential Simulated Annealing, we divide the start and end temperature by
a coefficient sM , where M ∈ N is a parameter. Since (Pisinger and Ropke 2007) only considered the
case where M = 1, we take this as the base case upon which we build the following additional variations.
The first variation builds on the observation that the best known solution at a certain iteration could be
much better than the initial one. Therefore, the reference value z can be updated every time the best
solution value improves, as T end = (f(x∗) · (1 − h))/ ln 0.5. This variant, which we call Exponential
Simulated Annealing With Adaptive Probability coincides with the base method if the value of
the initial solution is never improved. Similarly to what we did for TA, we also considered a version
of SA where the decrease between start and end temperature is linear. We named this version Linear
Simulated Annealing. The update function for T is T ← T − (T start − T end)/K. Another common
variant is SA with reheating, discussed by (Connolly 1992). Reheating is used to escape local minima in
later phases of the exploration, when the temperature is too small to accept a (worsening) diversifying
solution. In our implementation we perform reheating a fixed number of times R. When reheating
occurs, the temperature is set to the temperature T ∗ recorded the last time the best solution was
improved, multiplied by a coefficient r > 1:

T ← rT ∗ (every K/(R+ 1) iterations)

We call this variant Exponential Simulated Annealing With Reheating. On top of the parameters
hstart and hend, this variant has the two additional parameters R and r.

3.6 Great Deluge

With the Great Deluge (GD) criterion, introduced by (Dueck 1993) and presented in Algorithm 7, a
new solution is accepted only if its cost is smaller than a threshold, called the water level. The water
level starts at a high value and decreases at each iteration.

Parameters related to acceptance: The two key parameters used for GD are the initial water level and
the decrease rate. The initial water level is set to W = α · f(x0), where α > 1 is a user-provided
parameter. The water level is then decreased at each iteration, W ← W − β(W − f(x)), according to
another parameter β ∈ (0, 1).

3.7 Non-Linear Great Deluge

The Non-Linear Great Deluge criterion (NLGD), presented in Algorithm 8, builds on the same idea of
the GD, with a few variations. The water level decreases more quickly in the beginning of the search
process, more slowly towards the end, and can also increase. The NLGD was introduced by (Landa-Silva
and Obit 2008) for a course timetabling problem; in our implementation we change some of the fixed
values, which the authors tuned for their specific problem, and we replace them with parameters.

The general form of this acceptance criterion is similar to the criterion in Algorithm 7. The only
difference is that the acceptance criterion checks that either the new solution has a cost lower than the

7

Algorithm 7: Great Deluge
Input : Initial solution: x0

Input : Initial water level: W
1 x = x0 /* Initialise current solution */
2 x∗ = x0 /* Initialise best solution */
3 i = 1 /* Iteration count */
4 while i ≤ K do
5 Pick x′ ∈ N(x)
6 if f(x′) < W then
7 x = x′

8 end
9 if f(x) < f(x∗) then

10 x∗ = x
11 end
12 Update(W)
13 i = i+ 1

14 end
15 return x∗

Algorithm 8: Non-Linear Great Deluge
Input : Initial solution: x0

Input : Initial water level: W
1 x = x0 /* Initialise current solution */
2 x∗ = x0 /* Initialise best solution */
3 i = 1 /* Iteration count */
4 while i ≤ K do
5 Pick x′ ∈ N(x)
6 if f(x′) < W ∨ f(x′) < f(x) then
7 x = x′

8 end
9 if f(x) < f(x∗) then

10 x∗ = x
11 end
12 Update(W)
13 i = i+ 1

14 end
15 return x∗

current water level, or it improves over the current solution. This is done because in NLGD the water
level is not guaranteed to be above the cost of the current solution.

Parameters related to acceptance: The initial water level is chosen similarly as for GD: W = α · f(x0),
with a user-provided parameter α > 1. Three additional parameters — β, γ, and δ — are used to update
the water level at each iteration, according to the decision flow in Algorithm 9: if the new solution is
worse than the water level, then the water level tends to increase, to increase the chance of accepting
new solutions. If the last solution is better than the water level, but not much better (the gap is smaller
than β), then again we increase the water level, for similar reasons. On the other hand, if the gap is
larger than β, we decrease the water level and the decrease function is exponential.

Algorithm 9: Update(W)
1 G = W−f(x′)

W
/* Gap between water level and new solution */

2 if G < β then
3 return W + γ · |f(x′)−W | /* Re-increase W */
4 else
5 return W · e−δ·f(x∗) + f(x∗) /* Exponentially decrease W */
6 end

8

3.8 Record-to-Record Travel

The Record-to-Record Travel (RRT) criterion presented in Algorithm 10 is similar to TA, but the new
solution is accepted if the gap between the new and the best (rather than the current) solution is smaller
than a threshold T . The threshold starts at a large value and decreases at every iteration to reach its
predetermined value at the end of the search process.

Algorithm 10: Record-to-Record Travel
Input : Initial solution: x0

Input : Initial threshold: T
1 x = x0 /* Initialise current solution */
2 x∗ = x0 /* Initialise best solution */
3 i = 1 /* Iteration count */
4 while i ≤ K do
5 Pick x′ ∈ N(x)

6 if f(x′)−f(x∗)
f(x′) < T then

7 x = x′

8 end
9 if f(x) < f(x∗) then

10 x∗ = x
11 end
12 Update(T)
13 i = i+ 1

14 end
15 return x∗

Parameters related to acceptance: The user-provided parameters are the start threshold T start and the
end threshold T end. The initial threshold T is set to its start value and, at each iteration, moves towards
the end value.

Variants: Analogous to what was done for TA, we tested two rates of decay that give rise to two variants
that we call Linear Record-to-Record Travel and Exponential Record-to-Record Travel.

3.9 Worse Accept

The Worse Accept (WA) criterion presented in Algorithm 11 tries to increase diversification by accepting
a new solution if it improves over the current one, or — regardless of its cost — with a given probability,
p. This probability is higher at the beginning and smaller at the end of the solution process.

This criteria is particularly suited in cases when the objective value of the problem typically holds a
few discrete values, and passing from a value to the next better one is a relatively rare occurrence.
An example of such a problem is the Vertex Colouring Problem (VCP), in which one has to produce
a colouring of a graph, using the smallest number of colours. WA was employed as the acceptance
criterion in an ALNS-based metaheuristic for the Partition Colouring Problem (a generalisation of the
VCP) by (Furini, Malaguti, and Santini 2017).

Parameters related to acceptance: The user-provided parameters are the start probability pstart and the
end probability pend.

Variants: The probability decay, similarly to what done for other methods, can be linear or exponential.
This gives rise to two criteria: Linear Worse Accept and Exponential Worse Accept.

3.10 Parameter space reduction

For the linear variants of methods TA, SA, WA and RRT, it is sensible to set the end parameter (be
it threshold, temperature or probability) to values very close to zero. We can therefore reduce the

9

Algorithm 11: Worse Accept
Input : Initial solution: x0

Input : Initial probability: p
1 x = x0 /* Initialise current solution */
2 x∗ = x0 /* Initialise best solution */
3 i = 1 /* Iteration count */
4 while i ≤ K do
5 Pick x′ ∈ N(x)
6 if f(x′) < f(x) ∨ rand(0, 1) < p then
7 x = x′

8 end
9 if f(x) < f(x∗) then

10 x∗ = x
11 end
12 Update(p)
13 i = i+ 1

14 end
15 return x∗

dimension of the parameter space, by simply fixing these end parameters to 0. The resulting new
methods are referred to by using the additional suffix “(fixed end)”. Notice that, on the other hand,
an exponential decay function can never reach the value 0, by definition.

4 Test Problems

To evaluate the different acceptance criteria, we consider ALNS implementations for three different
combinatorial optimisation problems, as presented below.

4.1 Capacitated Vehicle Routing Problem

In the Capacitated Vehicle Routing Problem (CVRP) we have to deliver goods from a depot to a set
of customers, using an unlimited fleet of identical vehicles. Each customer demands a certain quantity
of goods and the vehicles have a limited capacity. Our task is to construct routes starting and ending
at the depot that minimise the total travel distance and that obey the capacity of the vehicles. We
assume that travel distances are symmetric in the sense that the distance from A to B is the same as
the distance from B to A. The problem can be modelled on a directed graph G = (N,A) where the
node set is N = {0, . . . , n} and node 0 represents the depot, while nodes C = {1, . . . , n} represent the
customers. Each customer i ∈ C has an associated demand qi ≥ 0 and the vehicles all have the same
capacity Q ≥ maxi∈C qi.

In the literature on heuristics for the CVRP, researchers have typically also considered instances that
include a distance or duration limit for each route. In the standard benchmark instances, customers
have a service time and for each route the sum of service times plus distance driven has to be less than
or equal to a threshold L. For more information the reader is referred to (Irnich, Toth, and Vigo 2014)
and (Laporte, Ropke, and Vidal 2014).

4.2 Capacitated Minimum Spanning Tree Problem

In the (symmetric) Capacitated Minimum Spanning Tree (CMST) we have to construct a spanning tree
subject to a capacity constraint. The problem is defined on a undirected graph G = (N,E) where N
is the node set and E are the edges. For each edge e ∈ E we are given an associated cost ce ≥ 0. In
the node set N = {0, . . . , n}, node 0 is the root node. The remaining nodes i ∈ N \ {0} are associated
with a demand di ≥ 0 and we are given a maximum demand or capacity Q. Removing node 0 from

10

any spanning tree results in the tree splitting into one or more connected components. In the CMST,
the solution has to satisfy the property that the sum of the demands of each component (or sub-tree)
is less than or equal to Q (capacity constraints). We seek the spanning tree that minimizes the sum
of edge costs while satisfying capacity constraints. For more information on this problem, see (Uchoa,
Fukasawa, et al. 2008).

4.3 Quadratic Assignment Problem

The Linear Assignment Problem (LAP) aims at assigning n facilities to n locations. The assignment of
facility i to location j incurs in a cost cij . The objective of the LAP is to minimise the total cost, while
each facility is assigned to exactly one location, and each location receives exactly one facility. The
Quadratic Assignment Problem (QAP) is an extension of the LAP, where the costs are associated to
pairs of assignments: we are given n4 costs, with cijkl corresponding to the simultaneous assignment of
facility i to location j, and facility k to location l. A cost can be thought of as cijkl = fikdjl where fik
is the flow to be sent from facility i to facility k, and djl is the distance between location j and location
l. More information about this problem can be found in the seminal paper by (Lawler 1963). For works
on metaheuristics for the QAP see, e.g., (Stützle 2006; James, Rego, and Fred Glover 2009).

5 ALNS applied to Test Problems

In the following we describe details of ALNS implementations for each of the two optimisation problems
that we are solving. We point out that we used the parallel version of ALNS described in (Ropke and
Santini 2016), with the number of parallel threads set to 8.

5.1 ALNS for the CVRP

Let n be the number of customers in the instance. We determine an upper bound for the number of
customers to remove based on two parameters: an absolute upper bound ω̄+ and a relative one ω+. The
upper bound is then n+ = min{ω̄+, ω+n}. Similarly a lower bound is based on the parameters ω̄− and
ω−; the lower bound is n− = min{n+,max{ω̄−, ω−n}}. Based on the upper and lower bound we select
the number of customers to remove, r, as a uniformly random number in the interval {n−, . . . , n+}.

The destroy method used are: random removal, relatedness removal (introduced by (Shaw 1998)), and
history-based removal. These methods are described in detail in (Ropke and Pisinger 2006a, Section
5). The repair method used is called regret repair, first introduced for vehicle problems by (Potvin and
Rousseau 1993) and described in detail in (Ropke and Pisinger 2006b, Section 3.2.2). A steepest descent
algorithm based on a small neighbourhood is also implemented to improve the solution found by the
regret heuristic. The descent algorithm uses the 2-opt neighbourhood, both considering the intra-route
and the inter-route variant (also known as 2-opt*, see (Laporte, Ropke, and Vidal 2014)). In order to
save running time, it is not used every time a partial solution has been repaired, but only with a given
probability p2-opt.

A random starting solution is created by constructing routes iteratively. Let U be the set of customers
that are still not placed in the solution. Initially U contains all customers. In order to start a new route,
a random seed customer is selected from U . Customers are then added to the route until the capacity
or the length constraint on the route disallow further insertions. When choosing the customer to insert
into a growing route, the algorithm simply selects the customer whose insertion increases the cost of
the route the least. Whenever a route is full, a new route is created following the same procedure. This
process continues until all customers have been inserted.

11

5.2 Simple LNS for the CVRP

A simplified version of the ALNS is also considered for the CVRP. The reason for this is that the full
ALNS was developed using the SA acceptance criterion, and that the selection of components in the full
ALNS could therefore be biased towards components that fit well with the behavior of the SA criterion.
The simple LNS for the CVRP uses a single destroy and a single repair method. The destroy method is
random removal and the repair method is the deterministic regret method. The repair method does not
include the local improvement method. The number of customers to remove and the initial solution are
found in the same way as for the more complex ALNS method. We sometimes refer to this combination
of an ALNS implementation and test problem as Simple CVRP.

5.3 CMST

To the best of our knowledge, the first application of the ALNS metaheuristic to the CMST problem is
presented in (Ropke and Santini 2016). In the following, we give a brief summary of the implementation,
while referring the reader to the cited article for more details.

The number of nodes of the graph to remove is determined in the same way as for the CVRP (see
Section 5.1). The destroy methods used are relatedness removal and history-based removal, which are
analogous to the CVRP methods with the same names. Similarly, the repair method, regret repair,
is analogous to the method used for the CVRP. Furthermore, we also used a greedy insertion repair
method. The solutions produced by the repair methods are improved by solving a minimum spanning
tree problem for each sub-tree of the solution.

Unlike what is done for the CVRP, the initial solution is created deterministically by a two-stage
procedure that first estimates the number of sub-trees that need to be created, and then assigns nodes
to the subtrees.

5.4 QAP

The implemented ALNS destroys a solution by removing facilities and repairs the solution by reinserting
the facilities. The number of facilities to remove is determined in the same way as for the CVRP and
CMST where n now is the number of facilities in the instance. One destroy method is implemented, it
selects the facilities to remove at random. Three repair methods are implemented. All methods reinsert
the facilities one by one and they differ in the way they order the facilities to insert.

Greedy repair inserts the facility whose insertion increases the overall cost the least. When evaluating
insertion positions it is possible to apply noise to the cost of each insertion in order to randomise the
method. When the greedy repair method is invoked the deterministic or the randomised version is
selected at random, both have equal probability of being selected. Worst-facility-first repair takes the
opposite strategy and first inserts the facility that will increase the cost of the solution the most (it has
to be inserted, so why not do it straight away). Random-sequence repair creates a random permutation
of the facilities that should be inserted and inserts them in this order. Common for all repair methods
is that when a facility has to be inserted, it is inserted at the location where it increases the overall cost
the least.

A two-opt steepest descent algorithm has been implemented to improve the solution generated by the
repair methods. The algorithm considers all possible swaps of two facilities and performs the swap that
decreases the objective value the most. This continues until there is no way of improving the solution
by swapping two facilities (see e.g. Merz and Freisleben 2000). The two-opt algorithm is used with
10% probability after the worst-facility-first repair and random-sequence repair methods. It is not used
together with the greedy repair method.

To generate an initial solution the greedy-repair method is used. The first two facilities are placed using
the approach suggested by Y. Li, Pardalos, and Resende 1994 and the remaining facilities are placed

12

using the greedy repair method.

5.5 Problem-specific parameters

Some parameters of the ALNS implementations, relative to the problem-specific destroy and repair
heuristics, and to local improvement methods, are kept at fixed values. Table 1 describes the values of
these parameters.

Problem Param type Parameter Values

CMST Destroy Number of customers to remove ω̄+ = 30, ω+ = 0.4, ω̄− = 5, ω− = 0.1
CMST Destroy Destroy close customers η = n

2
, pfix = 4

CMST Destroy Historical node-pair destroy phist = 5
CMST Repair Regret repair pregret = 1.5 (stochastic version)
CVRP Destroy Number of nodes to remove ω̄+ = 50, ω+ = 0.4, ω̄− = 10, ω− = 0.1
CVRP Destroy Relatedness destroy method prel = 5
CVRP Destroy Historical node-pair destroy phist = 5
CVRP Repair Regret repair pregret = 1.5 (stochastic version)
CVRP Local impr. 2-opt∗ local search p2-opt = 0.1
QAP Destroy Number of locations to remove ω̄+ = 50, ω+ = 0.4, ω̄− = 8, ω− = 0.1
QAP Repair Greedy repair probability of adding noise p = 0.5
QAP Repair Greedy repair noise factor γ = 0.4

Table 1: Problem-specific parameters which have been kept fixed.

6 Parameter Tuning

With a few exceptions, all acceptance criteria described in Section 3 depend on one or more parameters.
To tune these parameters an algorithmic approach is preferred to a manual one in order to avoid bias
toward acceptance criteria that the authors know well. A substantial amount of literature is available on
algorithms for automatic parameter tuning, and some prominent examples are described in the works
by (Birattari et al. 2010) and (Hutter et al. 2009). In this work we have implemented a simple iterated
local search procedure to perform parameter tuning, as described below.

Given an acceptance criterion and a problem chosen among the ones we consider in this work (CMST,
CVRP, Simple CVRP, and QAP), let N be the number of parameters we are tuning. Let n be the
number of integer parameters and r the number of real-valued parameters. We assume without loss
of generality that the parameters are numbered α1, . . . , αn, αn+1, . . . , αn+r, and that N = n + r. The
parameter space will then be P = Nn × Rr.

The aim of the parameter tuning is to explore the parameter space, starting from an initial parameter
assignment α0 = (a01, . . . , a

0
N) ∈ P , in a certain number M ∈ N of iterations, and return the assign-

ment that gives, on average, the best results for the acceptance criterion and problem considered. Let
I1, . . . , IK be the instances used for parameter tuning and let B1, . . . , BK be the best objective function
values known from the literature for the instances (these might not be the optimal ones, if the instance
is open). For any given parameter assignment α, the algorithm is (re-)run λ ∈ N times, unchanged, on
each instance. This produces K average results, one for each instance, calculated as

Aα,k =
1

λ

λ∑
i=1

vα,i,k

where vα,i,k is the solution value obtained by the algorithm for instance Ik at the i-th rerun, with
parameter assignment α.

We can then calculate the deviation from the best known result, for each instance:

Dα,k =
Aα,k −Bk

Aα,k

13

The score of assignment α is calculated as the average deviation across all instances:

Sα =
1

K

K∑
k=1

Dα,k

The lower the score and, in particular, the closer it is to 0, the better is the parameter assignment α.

Algorithm 12: Parameter Tuning Algorithm
Input : Initial parameters α0

Input : Initial steps: σ0

1 for k = 1, . . . ,M do
2 αnew = BestInNb(αk−1, σk−1)

3 if αnew ̸= αk−1 then
4 αk = αnew

5 σk = σk−1

6 else
7 α′, α′′ = BestTwo()
8 αk = NewCentre(α′, α′′)

9 σk = NewSteps(α′, α′′)

10 if αk = αnew or StepsTooSmall(σk) then
11 αk = Diversify(αk)

12 σk = σ0

13 end
14 end
15 end
16 return arg mink=1,...,M {Sαk}

A general overview of the parameter tuning algorithm is given in Algorithm 12. An initial parameter
assignment α0 is given, together with an initial step σ0. The step defines the neighbourhood of the
current assignment:

N (α) =
{
(α′

1, . . . , α
′
N) | α′

i − αi ∈ {−σi, 0, σi} ∀i = 1, . . . , N
}

(2)

The neighbourhood is defined by all possible combination of moves, in all the directions defined by
the components of the parameter vector, each by its corresponding step, with σ0

1, . . . , σ
0
n ∈ N and

σ0
n+1, . . . , σ

0
N ∈ R. For larger values of N , the exploration of the neighbourhood defined above is

computationally expensive. Therefore, for values of N ≥ 3, we define the alternative neighbourhood:

N (α) = {(α′
1, . . . , α

′
N) |

∃i ∈ {1, . . . , N} : α′
i − αi ∈ {−σi, 0, σi} and

∀j ̸= i α′
j = αj} (3)

According to definition (3), therefore, we can only move along one direction at a time. Figure 1a and
Figure 1b give a graphical representation of N (α) for N = 2 and N = 3.

At each iteration of the algorithm, the next parameter assignment is chosen in the neighbourhood of
the current one (line 2) as the one with the best score:

αk+1 = argmin
{
Sα′ | α′ ∈ N (αk)

}
When αk+1 = αk, we have reached a local optimum and the search must be interrupted and restarted
somewhere else in the parameter space. In order to do this, we retrieve the best and second-best
parameter configuration encoutered during the whole search, α′ and α′′ respectively (line 7), and we set
the current parameter configuration as the centre of mass between α′ and α′′ (line 8):

αk =

(
α′
1 + α′′

1

2
, . . . ,

α′
N + α′′

N

2

)
14

(α1 − σ1, α2 − σ2)

•

(α1 − σ1, α2)

•

(α1 − σ1, α2 + σ2)

•

(α1, α2 − σ2)

•

(α1, α2)

•

(α1, α2 + σ + 2)

•

(α1 + σ1, α2 − σ2)

•

(α1 + σ1, α2)

•

(α1 + σ1, α2 + σ2)

•

(a) Case N = 2.

(α1, α2, α3)

•
(α1 + σ1, α2, α3)

•
(α1 − σ1, α2, α3)

•

(α1, α2 + σ2, α3)

•

(α1, α2 − σ2, α3)

•
(α1, α2, α3 − σ3)

•

(α1, α2, α3 + σ3)•

(b) Case N = 3. The diagonal dotted lines represent
movement along a third axis.

Figure 1: Representation of neighbourhood N (α).

where integer components are rounded to the nearest integer. The step sizes are also recalculated (line
9) and set as:

σk =

(
|α′

1 − α′′
1|

3
, . . . ,

|α′
N − α′′

N |
3

)
and, again, integer components are rounded. If, after recalculating αk, all steps are below their minimum
step size (which is a predetermined parameter), or if it happened that αk did not change (line 10) we
proceed with a stronger diversification (line 11) and we reset the step sizes (line 12). The strong
diversification consists in setting:

αk =
(
αk−1
1 + ρ1σ

0
1, . . . , α

k−1
N + ρNσ0

N

)
where each ρi is taken randomly from the intervals [−3,−1] ∪ [1, 3].

Tables 2 and 3 summarise the results of parameter tuning for the problems considered, using six tuning
instances for each problem. Column “Acceptance Criterion” shows the acceptance criteria, column
“Score” gives the value of Sα∗ for the best parameter assignment α∗ ∈ P , while column “Parameters”
gives the values of the parameters in α∗, using the same notation as in Section 3. The maximum
number of tuning iterations has been set to M = 20, the number of reruns to λ = 10 and the number
of iterations of each run (exit criterion) to 150,000.

7 Results

The computational experiments have been conducted on the following instances. For CMST: 104 in-
stances, available as the capmst test set in the OR Library of (Beasley 1990), containing from 41 to 200
nodes. For CVRP: 14 instances by (Christofides, Mingozzi, and Toth 1979), 13 instances by (Rochat
and Taillard 1995), 20 instances by (B. L. Golden et al. 1998), 12 instances by (F. Li, B. Golden, and
Wasil 2005), and 100 instances by (Uchoa, Pecin, et al. 2014). The CVRP instances contain between 50
and 1200 customers. For QAP: 136 symmetric instances from the QAPLIB by (Burkard, Karisch, and
Rendl 1997). The number of iterations and reruns were the same as used for parameter tuning: 150,000
iterations and 10 reruns.

Table 4 summarises the main results, reporting for each acceptance criterion the average deviation to
the best known solution from both the average (column “aDev”) and the best (column “bDev”) solution
obtained over the 10 runs for each instance. The results are shown separately for the CMST, the CVRP
using a full ALNS, the CVRP using a simple LNS, and the QAP. The last column (“aTime”) reports

15

C
M

ST
C

V
R

P

A
cc

ep
ta

nc
e

C
ri

te
ri

on
Sc

or
e

Pa
ra

m
et

er
s

Sc
or

e
Pa

ra
m

et
er

s

G
D

2
.2
1
6
·1

0
−
2

α
=

1
.0
1
6
7
,β

=
0
.0
0
0
1

1
.3
8
6
·1

0
−
2

α
=

1
.0
1
6
7
,β

=
0
.0
0
0
2

H
C

4
.5
6
3
·1

0
−
2

1
.8
9
0
·1

0
−
2

LA
H

C
1
.9
6
0
·1

0
−
2

L
=

2
2
5
0
0

1
.3
9
7
·1

0
−
2

L
=

1
5
0
0
0

Im
pr

ov
ed

LA
H

C
2
.0
2
4
·1

0
−
2

L
=

9
1
8
0

1
.3
4
0
·1

0
−
2

L
=

4
1
6
6

N
LG

D
2
.7
9
4
·1

0
−
2

α
=

2
.1
7
1
4
,β

=
0
.0
4
6
5
,γ

=
0
.1
0
5
7
,δ

=
0
.0
0
9
6

1
.4
7
0
·1

0
−
2

α
=

1
.2
5
0
0
,β

=
0
.0
0
7
5
,γ

=
0
.0
2
0
8
,δ

=
0
.0
1
0
0

RW
5
.8
2
8
·1

0
−
2

3
.0
6
2
·1

0
−
2

Li
n.

R
RT

1
.7
7
6
·1

0
−
2

T
st

ar
t
=

0
.0
7
5
0
,T

en
d
=

0
.0
0
3
7

9
.0
6
0
·1

0
−
3

T
st

ar
t
=

0
.0
2
2
2
,T

en
d
=

0
.0
0
0
0

Li
n.

R
RT

(fi
xe

d
en

d)
1
.7
7
3
·1

0
−
2

T
st

ar
t
=

0
.0
5
0
0

8
.7
3
3
·1

0
−
3

T
st

ar
t
=

0
.0
1
6
7

E
xp

.
R

RT
2
.0
4
4
·1

0
−
2

T
st

ar
t
=

0
.0
2
5
0
,T

en
d
=

0
.0
2
8
9

1
.1
3
3
·1

0
−
2

T
st

ar
t
=

0
.0
0
4
2
,T

en
d
=

0
.0
3
7
6

E
xp

.
SA

w
ith

A
d.

P
ro

ba
b.

1
.6
4
9
·1

0
−
2

h
st

ar
t
=

9
.7
5
0
0
,h

en
d
=

2
.0
0
9
3

1
.2
1
8
·1

0
−
2

h
st

ar
t
=

4
.7
5
0
0
,h

en
d
=

0
.6
9
4
4

E
xp

.
SA

1
.6
9
8
·1

0
−
2

h
st

ar
t
=

0
.1
1
2
8
,h

en
d
=

0
.0
1
0
4

1
. 1
3
0
· 1

0
−
2

h
st

ar
t
=

0
.1
2
1
1
,h

en
d
=

0
.0
0
0
4

Li
n.

SA
1
.6
0
6
·1

0
−
2

h
st

ar
t
=

1
1
.5
0
0
,h

en
d
=

1
.7
9
1
7

1
.1
3
2
·1

0
−
2

h
st

ar
t
=

3
.7
5
0
0
,h

en
d
=

0
.4
0
9
7

Li
n.

SA
(fi

xe
d

en
d)

1
.6
5
1
·1

0
−
2

h
st

ar
t
=

1
2
.1
9
3

1
.1
8
0
·1

0
−
2

h
st

ar
t
=

6
.8
1
5
2

In
st

an
ce

-s
ca

le
d

E
xp

.
SA

1
.6
0
1
·1

0
−
2

h
st

ar
t
=

1
3
.5
0
7
,h

en
d
=

2
.0
9
0
3
,M

=
1
.0
0
0
0

1
.1
2
2
·1

0
−
2

h
st

ar
t
=

4
.2
0
8
3
,h

en
d
=

0
.6
1
8
1
,M

=
1
.0
0
0
0

E
xp

.
SA

w
ith

R
eh

ea
tin

g
1
.6
1
1
·1

0
−
2

h
st

ar
t
=

1
2
.0
0
0
,h

en
d
=

1
.8
7
5
0
,r

=
3
.5
0
0
0
,R

=
1
.0
0
0
0

1
.1
3
8
·1

0
−
2

h
st

ar
t
=

1
3
.5
0
0
,h

en
d
=

0
.6
2
5
0
,r

=
0
.5
0
0
0
,R

=
1
.0
0
0
0

Li
n.

TA
1
.6
4
8
·1

0
−
2

T
st

ar
t
=

0
.0
7
0
8
,T

en
d
=

0
.0
0
1
4

1
.0
9
9
·1

0
−
2

T
st

ar
t
=

0
.0
2
5
0
,T

en
d
=

0
.0
0
0
0

Li
n.

TA
(fi

xe
d

en
d)

1
.6
6
7
·1

0
−
2

T
st

ar
t
=

0
.0
8
7
5

1
.1
2
3
·1

0
−
2

T
st

ar
t
=

0
.0
2
9
2

E
xp

.
TA

2
.2
5
9
·1

0
−
2

T
st

ar
t
=

0
.0
1
2
5
,T

en
d
=

0
.0
0
2
3

1
.2
9
6
·1

0
−
2

T
st

ar
t
=

0
.0
0
1
6
,T

en
d
=

0
.0
0
1
7

E
xp

.
W

A
1
.7
9
4
·1

0
−
2

p
st

ar
t
=

0
.7
8
5
1
,p

en
d
=

0
.0
9
7
9

1
.7
5
4
·1

0
−
2

p
st

ar
t
=

0
.0
5
0
0
,p

en
d
=

0
.0
1
5
0

Li
n.

W
A

1
.8
1
9
·1

0
−
2

p
st

ar
t
=

0
.6
5
8
0
,p

en
d
=

0
.0
4
3
0

1
.7
4
4
·1

0
−
2

p
st

ar
t
=

0
.1
5
0
0
,p

en
d
=

0
.0
1
6
7

Li
n.

W
A

(fi
xe

d
en

d)
1
.8
6
7
·1

0
−
2

p
st

ar
t
=

0
.5
5
0
0

1
.4
2
6
·1

0
−
2

p
st

ar
t
=

1
.0
0
0
0

Ta
bl

e
2:

Pa
ra

m
et

er
tu

ni
ng

re
su

lts
su

m
am

ry
fo

r
C

M
ST

an
d

C
V

R
P.

16

Si
m

pl
e

L
N

S
fo

r
C

V
R

P
Q

A
P

A
cc

ep
ta

nc
e

C
ri

te
ri

on
Sc

or
e

Pa
ra

m
et

er
s

Sc
or

e
Pa

ra
m

et
er

s

G
D

3
.3
6
2
·1

0
−
2

α
=

1
.1
2
4
1
,β

=
0
.0
0
0
2

1
.1
6
7
·1

0
−
2

α
=

1
.0
1
1
7
,β

=
0
.0
0
0
1

H
C

4
.8
4
5
·1

0
−
2

2
.9
0
9
·1

0
−
2

LA
H

C
3
.5
1
6
·1

0
−
2

L
=

1
0
8
3
3

1
.9
7
4
·1

0
−
2

L
=

1
7
5
0
0

Im
pr

ov
ed

LA
H

C
3
.4
7
2
·1

0
−
2

L
=

4
2
4
8

1
.6
7
7
·1

0
−
2

L
=

7
4
3
1

N
LG

D
3
.4
8
1
·1

0
−
2

α
=

1
.1
0
4
2
,β

=
0
.0
0
5
0
,γ

=
0
.0
0
0
0
,δ

=
0
.0
1
8
3

2
.1
2
4
·1

0
−
2

α
=

1
.7
5
0
0
,β

=
0
.0
1
5
0
,γ

=
0
.0
1
6
7
,δ

=
0
.0
1
2
5

RW
4
.7
3
0
·1

0
−
2

3
.0
7
2
·1

0
−
2

Li
n.

R
RT

2
.3
3
3
·1

0
−
2

T
st

ar
t
=

0
.0
1
7
6
,T

en
d
=

0
.0
0
0
0

0
.9
9
6
·1

0
−
2

T
st

ar
t
=

0
.1
6
6
4
,T

en
d
=

0
.0
0
0
2

Li
n.

R
RT

(fi
xe

d
en

d)
2
.4
0
5
·1

0
−
2

T
st

ar
t
=

0
.0
2
2
2

1
.0
1
9
·1

0
−
2

T
st

ar
t
=

0
.2
5
5
8

E
xp

.
R

RT
2
.6
7
9
·1

0
−
2

T
st

ar
t
=

0
.0
1
2
5
,T

en
d
=

0
.0
9
0
6

1
.4
2
1
·1

0
−
2

T
st

ar
t
=

0
.1
0
0
0
,T

en
d
=

0
.0
2
5
0

E
xp

.
SA

w
ith

A
d.

P
ro

ba
b.

2
.8
6
2
·1

0
−
2

h
st

ar
t
=

2
0
.2
7
3
,h

en
d
=

0
.5
1
4
1

1
.3
4
0
·1

0
−
2

h
st

ar
t
=

9
.7
5
0
0
,h

en
d
=

1
.2
0
8
3

E
xp

.
SA

2
.6
4
7
·1

0
−
2

h
st

ar
t
=

0
.1
3
6
7
,h

en
d
=

0
.0
0
0
8

1
. 2
8
6
· 1

0
−
2

h
st

ar
t
=

7
.6
3
5
9
,h

en
d
=

0
.0
0
0
2

Li
n.

SA
2
.7
8
8
·1

0
−
2

h
st

ar
t
=

9
.0
0
0
0
,h

en
d
=

0
.0
0
0
0

1
.3
0
9
·1

0
−
2

h
st

ar
t
=

9
.5
0
0
0
,h

en
d
=

1
.5
8
3
3

Li
n.

SA
(fi

xe
d

en
d)

2
.7
5
0
·1

0
−
2

h
st

ar
t
=

1
2
.3
4
7

1
.1
3
2
·1

0
−
2

h
st

ar
t
=

1
2
.0
0
0

In
st

an
ce

-s
ca

le
d

E
xp

.
SA

2
.7
3
3
·1

0
−
2

h
st

ar
t
=

1
4
.2
2
9
,h

en
d
=

0
.6
2
5
0
,M

=
1
.0
0
0
0

1
.4
1
1
·1

0
−
2

h
st

ar
t
=

1
2
.0
0
0
,h

en
d
=

2
.0
0
0
0
,M

=
1
.0
0
0
0

E
xp

.
SA

w
ith

R
eh

ea
tin

g
2
.8
2
1
·1

0
−
2

h
st

ar
t
=

1
2
.7
5
0
,h

en
d
=

0
.7
5
0
0
,r

=
2
.4
1
6
7
,R

=
2
.5
8
3
3

1
.3
4
7
·1

0
−
2

h
st

ar
t
=

1
2
.2
5
0
,h

en
d
=

1
.7
2
9
2
,r

=
3
.2
5
0
0
,R

=
2
.8
7
5
0

Li
n.

TA
2
.5
9
9
·1

0
−
2

T
st

ar
t
=

0
.0
2
1
2
,T

en
d
=

0
.0
0
0
3

1
.8
4
7
·1

0
−
2

T
st

ar
t
=

0
.0
5
0
0
,T

en
d
=

0
.0
0
0
0

Li
n.

TA
(fi

xe
d

en
d)

2
.5
9
7
·1

0
−
2

T
st

ar
t
=

0
.0
2
0
8

1
.8
0
0
·1

0
−
2

T
st

ar
t
=

0
.0
4
1
9

E
xp

.
TA

3
.0
8
7
·1

0
−
2

T
st

ar
t
=

0
.0
0
3
3
,T

en
d
=

0
.0
0
5
9

1
.6
1
3
·1

0
−
2

T
st

ar
t
=

0
.0
5
0
0
,T

en
d
=

0
.0
0
1
3

E
xp

.
W

A
3
.1
2
1
·1

0
−
2

p
st

ar
t
=

1
.0
0
0
0
,p

en
d
=

0
.1
0
9
0

1
.0
0
2
·1

0
−
2

p
st

ar
t
=

0
.4
5
0
0
,p

en
d
=

0
.0
5
1
7

Li
n.

W
A

2
.9
7
4
·1

0
−
2

p
st

ar
t
=

1
.0
0
0
0
,p

en
d
=

0
.0
0
2
2

0
.9
3
2
·1

0
−
2

p
st

ar
t
=

0
.3
0
0
0
,p

en
d
=

0
.0
3
0
0

Li
n.

W
A

(fi
xe

d
en

d)
3
.0
4
6
·1

0
−
2

p
st

ar
t
=

0
.9
8
3
3

1
.0
2
9
·1

0
−
2

p
st

ar
t
=

0
.3
8
3
3

Ta
bl

e
3:

Pa
ra

m
et

er
tu

ni
ng

re
su

lts
su

m
am

ry
fo

r
Si

m
pl

e
C

V
R

P
an

d
Q

A
P.

17

the average solution time. Notice that the Random Walk criterion has consistently higher running time,
and this is due to a technical reason in the implementation of the algorithm: every time a solution is
accepted (which is, for Random Walk, at every iteration) a potentially expensive copy is performed, to
store the solution object and replace the current solution object.

The results have further been analysed using the Wilcoxon signed-rank test, by comparing each pair
of acceptance criteria under the null-hypothesis that the deviations between the average solution found
and the best known solution are drawn from identical distributions. Figure 2 summarises the Wilcoxon
test for the CMST, with one node per acceptance criterion and an arc going from the better criterion
to the worse criterion if the null-hypothesis is rejected at a 0.05 significance level. The same is shown
for the full ALNS for CVRP in Figure 3, for the simple LNS for CVRP in Figure 4, and for the QAP
in Figure 5.

One of the goals of this study was to quantify the effect that different move acceptance criteria have
on the performance of an ALNS. From Table 4 it is clear that the consequences of using a substandard
move acceptance criterion can be quite large. For the CMST and both implementations for the CVRP,
the difference between the best and the worst acceptance criterion is more than 2 percentage points in
terms of the average gap to the best known solutions. There are two criteria that perform consistently
worse than the others: RW and HC. However, even when disregarding RW and HC, the difference
between the best criteria and the worst of the rest is more than 0.5 percentage points for the full ALNS
implementations for CMST and CVRP, and even larger for the simpler LNS method for CVRP. For the
QAP, the differences are somewhat smaller, but still around 0.5 percentage points for the average gaps.

Another goal of the study was to determine which move acceptance criterion is best suited for the
ALNS. The results are not entirely clear on this point, but by extracting information from the Wilcoxon
signed-rank tests, some conclusions can be reached. The simple criteria RW and HC are clearly inferior
to the alternatives. The order of the other acceptance criteria vary between problems, but they can
be separated in two groups: criteria that are close to being top ranked for at least one problem, and
criteria that are always mediocre. In the first category we find variants of SA, RRT, TA, and WA,
and in the latter category we find variants of LAHC, GD, and NLGD. Regarding WA, there is only
one implementation, for the QAP, where the criterion is among the very best, and there are other
implementations, such as for the CVRP, where it does not perform well. This leaves three candidates
for the best overall criterion: SA, RRT, and TA.

Differentiating between the three best types of acceptance criteria may not be entirely straightforward:
a variant of SA is best for CMST, whereas a variant of RRT is best for CVRP and QAP. On the other
hand, a version of TA is better than RRT on CMST and better than SA on CVRP. However, when
considering the statistical significance, as illustrated in Figures 2 to 5, it turns out that linear RRT is
never worse than any other method, with the exception of being worse than linear RRT with fixed end
in the full implementation for CVRP. We may therefore suggest that although SA, RRT, and TA are
all among the best performing acceptance criteria, RRT may arguably be the very best.

As each of SA, RRT, and TA were implemented in different variants, it is possible to compare whether
linear or exponential versions are better, and whether it is better to fix the end point (fixed end), or
to allow the parameter tuning process to potentially find better end points for the control parameters:
the linear version of RRT is better than the exponential version of RRT, with statistical significance for
each of CMST, CVRP, simple CVRP and QAP. The linear version of TA is better than the exponential
version of TA with statistical significance for three of the test sets. The exception is the QAP, where the
exponential version has smaller average gaps, but the difference is not statistically significant. There
are no statistically significant differences between the exponential and linear versions of SA. Regarding
versions with fixed end, no consistent pattern emerges: it seems that the parameter tuning process was
able to obtain similar performance whether or not the end point for the control parameter was fixed.

Regarding the two hypotheses stated in the introduction, we cannot reject the notion that SA is one
of the best move acceptance criteria as, even though linear RRT is performing better for CVRP and
QAP, linear SA is better for CMST. On the other hand, we can reject the hypothesis that the effect of

18

GD

NLGD

HC RW

LAHC

Lin. RRT

Lin. WA

Exp. RRT

Exp. WAExp. SA with Ad. Prob.

Exp. TA Improved LAHC

Lin. SA

Lin. RRT (fixed end) Lin. WA (fixed end)

Lin. TAExp. SA

Lin. SA (fixed end) Lin. TA (fixed end)

Exp. SA with Reheating Instance-scaled Exp. SA

Figure 2: Graph based on the Wilcoxon test for problem CMST and using the deviation between the average
run and the overall best. Methods on top dominate methods on the bottom. Bluer and thicker arcs mean that
the difference in deviation is greater.

the move acceptance criterion is small compared to random effects when solving each instance: we find
clear evidence that some move acceptance criteria perform worse than others, for example that GD is
worse than linear SA with statistical significance in all four test sets.

A third goal of this study was to measure how different move acceptance criteria may influence the
search behaviour. To analyse this, statistics were collected during each run and analysed using mul-
tiple linear regression. In the regression, the dependent variable is the deviation between the average
objective function in a run and the best known solution value. Hence, there is one observation for each
combination of an instance and a move acceptance criterion. Eleven independent variables are included,
corresponding to the following statistics calculated for each run: the iteration of the last accepted move,
the iteration of the last improved best found, the longest streak of rejected moves, the maximum dis-
tance between two consecutively accepted solutions, the total distance between accepted solutions, the
maximum distance from the initial solution, the number of solutions accepted, the number of times
that the best solution was improved, the number of times that the current solution was improved, the
relative average accepted objective function value, and the relative average rejected objective function
value. The distance between solutions is calculated as the Hamming distance where each edge is repre-
sented by a binary digit. The relative objective function value of a move is calculated as the ratio of
the new solution and the old solution, so that values greater than one imply worsening moves.

Regression coefficients are determined using the method of ordinary least squares, which implies min-
imising the sum of the squares of the error terms

∑N
i=1 ε

2
i where N is the number of observations, and

the model is:
yi = λ0 + λ1xi,1 + . . .+ λ11xi,11 + εi i = 1, . . . , N (4)

with λ0 being the intercept and λ1, . . . , λ11 the regression parameters, yi the observed values of the
dependent variables and xij the observed values of the independent variables.

To better gauge the relative importance of the different independent variables, the values of each of
them were normalised by subtracting the population mean and dividing by the standard deviation.

19

C
M

ST
A

cc
ep

ta
nc

e
C

ri
te

ri
on

aD
ev

%
bD

ev
%

aT
im

e
(s

)

Li
n.

SA
0.

39
9

0.
10

8
9.

36
7

In
st

an
ce

-s
ca

le
d

E
xp

.
SA

0.
40

0
0.

15
0

9.
22

3
Li

n.
SA

(fi
xe

d
en

d)
0.

40
7

0.
11

9
9.

22
4

E
xp

.
SA

0.
40

9
0.

12
7

9.
08

7
Li

n.
TA

(fi
xe

d
en

d)
0.

41
8

0.
11

9
9.

47
0

E
xp

.
SA

w
ith

R
eh

ea
tin

g
0.

42
8

0.
17

4
9.

08
6

Li
n.

R
RT

0.
47

3
0.

21
3

7.
88

8
Li

n.
TA

0.
47

4
0.

12
0

9.
15

6
E

xp
.

SA
w

ith
A

d.
P

ro
ba

b.
0.

50
9

0.
15

9
8.

66
5

Li
n.

R
RT

(fi
xe

d
en

d)
0.

51
4

0.
23

4
7.

69
1

Li
n.

W
A

(fi
xe

d
en

d)
0.

51
8

0.
20

3
8.

18
6

E
xp

.
W

A
0.

55
2

0.
18

1
8.

39
4

Li
n.

W
A

0.
56

6
0.

19
5

8.
36

1
Im

pr
ov

ed
LA

H
C

0.
64

4
0.

22
1

7.
15

6
E

xp
.

R
RT

0.
64

6
0.

26
9

6.
75

8
LA

H
C

0.
65

5
0.

24
4

7.
38

0
G

D
0.

68
2

0.
37

1
6.

58
6

E
xp

.
TA

0.
75

9
0.

31
5

8.
81

8
N

LG
D

0.
99

5
0.

49
2

7.
66

5
H

C
2.

22
6

1.
21

5
6.

58
6

RW
2.

82
4

2.
30

5
12

.1
10

C
V

R
P

A
cc

ep
ta

nc
e

C
ri

te
ri

on
aD

ev
%

bD
ev

%
aT

im
e

(s
)

Li
n.

R
RT

(fi
xe

d
en

d)
0.

39
1

0.
11

2
17

.8
71

Li
n.

R
RT

0.
42

3
0.

14
8

18
.4

43
Li

n.
TA

0.
49

7
0.

17
9

20
.0

56
Li

n.
TA

(fi
xe

d
en

d)
0.

51
1

0.
19

7
20

.2
85

E
xp

.
SA

w
ith

R
eh

ea
tin

g
0.

52
7

0.
17

5
18

.5
08

Li
n.

SA
0.

52
7

0.
16

7
17

.5
00

E
xp

.
SA

0.
52

9
0.

17
3

18
.3

74
Li

n.
SA

(fi
xe

d
en

d)
0.

53
8

0.
20

0
18

.4
61

In
st

an
ce

-s
ca

le
d

E
xp

.
SA

0.
54

2
0.

15
9

17
.3

28
E

xp
.

R
RT

0.
55

1
0.

12
6

16
.3

08
E

xp
.

SA
w

ith
A

d.
P

ro
b.

0.
57

8
0.

21
2

17
.2

43
Li

n.
W

A
(fi

xe
d

en
d)

0.
66

1
0.

30
1

19
.2

63
LA

H
C

0.
71

6
0.

28
2

17
.0

56
Im

pr
ov

ed
LA

H
C

0.
72

0
0.

30
7

17
.7

19
G

D
0.

72
6

0.
46

3
17

.9
01

E
xp

.
TA

0.
73

5
0.

27
6

16
.4

16
Li

n.
W

A
0.

96
3

0.
49

6
16

.3
48

N
LG

D
0.

98
9

0.
39

3
15

.4
53

E
xp

.
W

A
1.

14
7

0.
51

0
14

.2
85

H
C

1.
16

3
0.

55
7

14
.0

08
RW

2.
58

3
2.

22
6

24
.1

43
Si

m
pl

e
L

N
S

fo
r

C
V

R
P

A
cc

ep
ta

nc
e

C
ri

te
ri

on
aD

ev
%

bD
ev

%
aT

im
e

(s
)

Li
n.

R
RT

(fi
xe

d
en

d)
0.

75
4

0.
24

1
11

.6
85

Li
n.

R
RT

0.
76

8
0.

21
8

11
.5

47
E

xp
.

R
RT

0.
93

9
0.

31
5

10
.4

21
Li

n.
TA

(fi
xe

d
en

d)
0.

97
2

0.
35

8
13

.4
97

Li
n.

TA
0.

97
3

0.
32

8
13

.5
29

E
xp

.
SA

1.
06

2
0.

36
3

13
.2

02
In

st
an

ce
-s

ca
le

d
E

xp
.

SA
1.

07
6

0.
39

9
13

.1
29

Li
n.

SA
(fi

xe
d

en
d)

1.
08

6
0.

44
3

13
.5

07
Li

n.
SA

1.
11

2
0.

42
7

13
.2

06
E

xp
.

SA
w

ith
R

eh
ea

tin
g

1.
15

0
0.

44
5

12
.7

44
Li

n.
W

A
(fi

xe
d

en
d)

1.
27

0
0.

58
0

10
.2

16
E

xp
.

SA
w

ith
A

d.
P

ro
b.

1.
39

8
0.

52
6

12
.9

79
E

xp
.

TA
1.

42
5

0.
59

1
12

.1
65

N
LG

D
1.

69
5

0.
71

3
11

.0
33

G
D

1.
70

9
1.

18
9

11
.9

58
LA

H
C

1.
87

0
0.

98
6

8.
20

8
Im

pr
ov

ed
LA

H
C

1.
87

9
0.

98
8

7.
32

9
Li

n.
W

A
2.

46
1

1.
27

2
6.

34
7

E
xp

.
W

A
2.

51
6

1.
31

2
6.

15
3

H
C

2.
59

5
1.

38
1

5.
81

0
RW

3.
94

6
3.

34
0

15
.1

26

Q
A

P
A

cc
ep

ta
nc

e
C

ri
te

ri
on

aD
ev

%
bD

ev
%

aT
im

e
(s

)

Li
n.

W
A

(fi
xe

d
en

d)
0.

13
6

0.
04

1
43

.4
02

Li
n.

W
A

0.
13

8
0.

07
3

47
.0

77
E

xp
.

W
A

0.
14

5
0.

06
5

41
.0

57
Li

n.
R

RT
0.

15
4

0.
04

2
66

.9
73

Li
n.

R
RT

(fi
xe

d
en

d)
0.

16
4

0.
04

8
73

.5
29

Li
n.

SA
(fi

xe
d

en
d)

0.
17

3
0.

04
8

65
.1

91
E

xp
.

SA
w

ith
R

eh
ea

ri
ng

0.
20

4
0.

12
2

66
.3

63
Li

n.
SA

0.
24

0
0.

12
2

68
.0

00
In

st
an

ce
-s

ca
le

d
E

xp
.

SA
0.

24
1

0.
12

3
67

.6
05

E
xp

.
SA

w
ith

A
d.

P
ro

b.
0.

24
4

0.
05

8
58

.9
00

E
xp

.
R

RT
0.

25
2

0.
15

5
84

.9
32

E
xp

.
TA

0.
26

6
0.

16
2

85
.2

07
E

xp
.

SA
0.

27
3

0.
14

3
68

.2
53

RW
0.

37
0

0.
21

7
86

.5
65

Li
n.

TA
0.

39
0

0.
05

2
58

.0
36

Li
n.

TA
(fi

xe
d

en
d)

0.
40

4
0.

02
7

49
.0

41
Im

pr
ov

ed
LA

H
C

0.
42

6
0.

04
0

23
.6

12
G

D
0.

43
0

0.
02

2
24

.3
18

LA
H

C
0.

50
4

0.
04

3
22

.3
42

N
LG

D
0.

59
6

0.
06

9
24

.0
20

H
C

0.
66

6
0.

07
3

21
.4

54

Ta
bl

e
4:

Fi
na

lr
es

ul
ts

fo
r

C
M

ST
,C

V
R

P,
Si

m
pl

e
LN

S
fo

r
C

V
R

P,
an

d
Q

A
P.

20

GD

NLGD Lin. WA

HC Exp. WA

RW

LAHC

Lin. RRT

Lin. SA

Lin. TA Exp. RRT

Exp. SA

Lin. TA (fixed end)

Exp. SA with ReheatingInstance-scaled Exp. SA

Exp. SA with Ad. Prob.

Improved LAHC Exp. TA Lin. WA (fixed end)

Lin. SA (fixed end)

Lin. RRT (fixed end)

Figure 3: Graph based on the Wilcoxon test for problem CVRP and using the deviation between the average
run and the overall best. Methods on top dominate methods on the bottom. Bluer and thicker arcs mean that
the difference in deviation is greater.

21

GD

LAHCImproved LAHC

HC Lin. WA Exp. WA

RW

NLGD

Lin. RRT

Lin. TA

Exp. SA

Lin. TA (fixed end)Instance-scaled Exp. SA

Lin. SA Lin. SA (fixed end) Exp. SA with Reheating

Exp. TALin. WA (fixed end)Exp. SA with Ad. Prob.

Exp. RRT

Lin. RRT (fixed end)

Figure 4: Graph based on the Wilcoxon test for the Simple LNS for CVRP and using the deviation between
the average run and the overall best. Methods on top dominate methods on the bottom. Bluer and thicker arcs
mean that the difference in deviation is greater.

22

Figure 5: Graph based on the Wilcoxon test for the problem QAP and using the deviation between the average
run and the overall best. Methods on top dominate methods on the bottom. Bluer and thicker arcs mean that
the difference in deviation is greater.

After running the regression analysis with all the independent variables, the variables that did not have
regression coefficients significantly different from 0, at a 0.05 significance level, were removed and the
regression repeated.

The results of the regression analyses are summarised in Table 5. A negative regression coefficient means
that a higher value of the corresponding independent variable is associated with a better performance.
There are some differences between the results for each of CMST, CVRP, Simple CVRP, and QAP, but
also some consistent similarities: a worse performance is associated with high values of the iteration of
the last accepted solution and the iteration of the last improvement of the best solution found. This may
indicate that an intensification phase with a high probability of rejecting solutions should not be delayed
for too long. Higher values for the length of the longest streak of rejected moves is associated to a worse
performance, meaning that move acceptance criteria should be designed so as to avoid being stuck in the
same solution for too many iterations. Increased values of the maximum distance of accepted solutions
are associated with improved performance. This may suggest that move acceptance should not be based
solely on the quality of the resulting solution but also, to some extent, on how similar the new solution
is to the current one. The relative average objective function value of rejected solutions is found to
influence the performance: as the regression coefficients are negative, good performance is found when
the solutions rejected are worse. This could simply mean that it is good that those solutions are not
accepted. There is also a trend that a higher number of accepted solutions leads to better performance.

8 Conclusions

Many different move acceptance criteria are available when implementing a heuristic based on the ALNS
framework. These include Hill Climbing (HC), Random Walk (RW), Late Acceptance Hill Climbing
(LAHC), Threshold Acceptance (TA), Simulated Annealing (SA), Great Deluge (GD), Non-Linear Great
Deluge (NLGD), and Record-to-Record Travel (RRT). In addition, a new criterion called Worse Accept
(WA) was introduced in this paper. Based on current literature, it is difficult to ascertain whether any
of these are better choices than the others in the context of the ALNS framework.

We presented a large computational study, where the results point out that HC and RW are bad choices
for a move acceptance criterion in four different settings, including an ALNS for a capacitated minimum

23

C
M

ST
C

V
R

P
Si

m
pl

e
L

N
S

fo
r

C
V

R
P

Q
A

P

In
de

pe
nd

en
t

Va
ri

ab
le

R
eg

re
ss

io
n

C
oe

ff.
p-

va
lu

e
R

eg
re

ss
io

n
C

oe
ff.

p-
va

lu
e

R
eg

re
ss

io
n

C
oe

ff.
p-

va
lu

e
R

eg
re

ss
io

n
C

oe
ff.

p-
va

lu
e

(I
nt

er
ce

pt
)

0.
00

5
—

0.
00

6
—

0.
01

3
—

−
0.

00
1

—
It

er
.

La
st

A
cc

ep
t.

0.
00

5
0.

00
0

0.
00

1
0.

02
0

0.
00

5
0.

00
1

It
er

.
La

st
Im

pr
.

B
es

t
0.

00
3

0.
00

0
0.

00
1

0.
00

0
0.

00
2

0.
00

0
0.

00
5

0.
00

0
Lo

ng
es

t
R

ej
ec

t
St

re
ak

0.
00

5
0.

00
1

0.
00

2
0.

00
1

0.
00

5
0.

00
1

0.
00

3
0.

00
1

M
ax

.
D

is
t.

bt
w

A
cc

ep
te

d
−

0.
00

1
0.

00
0

−
0.

00
6

0.
00

0
−

0.
00

4
0.

00
0

−
0.

00
5

0.
00

0
M

ax
.

D
is

t.
fr

om
In

it.
−

0.
00

2
0.

00
1

0.
00

9
0.

00
0

0.
00

4
0.

00
0

To
t.

D
is

t.
by

A
cc

ep
t.

0.
00

1
0.

00
0

−
0.

00
1

0.
00

0
N

um
.

So
l.

A
cc

ep
t.

−
0.

00
1

0.
00

1
−

0.
00

1
0.

00
0

−
0.

00
7

0.
00

1
N

um
.

So
l.

Im
pr

.
B

es
t

0.
00

7
0.

00
0

−
0.

00
2

0.
00

0
0.

00
4

0.
00

0
0.

00
4

0.
00

0
N

um
.

So
l.

Im
pr

.
C

ur
re

nt
−

0.
00

3
0.

00
0

R
el

.
Av

g.
A

cc
ep

t.
O

bj
.

−
0.

00
2

0.
00

0
0.

01
1

0.
00

0
0.

01
3

0.
00

0
R

el
.

Av
g.

R
ej

ec
t.

O
bj

.
−

0.
01

2
0.

00
0

−
0.

01
6

0.
00

0
−

0.
01

1
0.

00
0

Ta
bl

e
5:

R
eg

re
ss

io
n

an
al

ys
is

re
su

lts
fro

m
C

M
ST

,C
V

R
P,

Si
m

pl
e

LN
S

fo
r

C
V

R
P,

an
d

Q
A

P.
T

he
de

pe
nd

en
t

va
ria

bl
e

is
th

e
de

vi
at

io
n

be
tw

ee
n

th
e

av
er

ag
e

ru
n

an
d

th
e

ov
er

al
lb

es
t.

T
he

ta
bl

e
on

ly
in

cl
ud

es
va

lu
es

fo
r

th
e

sig
ni

fic
an

t
in

de
pe

nd
en

t
va

ria
bl

es
.

24

spanning tree problem (CMST), an ALNS for the capacitated vehicle routing problem (CVRP), a simple
LNS for the CVRP, and an ALNS for the quadratic assignment problem (QAP). In the same tests, SA,
RRT, and TA performed best, whereas LAHC, GD, NLGD, and WA performed better than HC and
RW but worse than SA, RRT, and TA. In the three out of four test sets, a version of RRT performed
to such high standards that no other acceptance criterion was better with statistical significance. In
the forth test set (the full ALNS for CVRP), the same version of RRT was only bettered by another
version of RRT.

Several sub-variants of the move acceptance criteria were also tested and analysed. We observed that
linear versions, where the crucial parameter for acceptance changes linearly from a start to an end
value, of many well-established criteria fare better than or similarly to the standard exponential versions.
Furthermore, the linear versions have the advantage that the end value for the aforementioned parameter
can often be fixed to zero. Such an approach does not lead to deteriorated solution quality, but reduces
the number of dimensions of the parameter space by one.

It was found that the effect of using different move acceptance criteria can be fairly large, easily affecting
the average gap to the best known solutions by more than 0.5 percentage points. Multiple linear
regression was used to find relationships between the performance of the move acceptance criteria and
statistics gathered during the runs. Better performance is associated with 1) accepting the last move
in an early iteration, 2) finding the last improvement of the best solution in an early iteration, 3) not
having long streaks of rejecting moves, 4) having a long maximum distance in the search space between
accepted solutions, and 5) having high relative average objective function values for rejected solutions.

To summarise, we can make the following recommendations for implementing an ALNS heuristic:

• Use an acceptance criterion based on SA, TA, or RRT. If time permits, it may pay off to attempt
all three, and otherwise, RRT should be preferred.

• Use a linear acceptance parameter function ending at zero: this reduces the number of parameters
by one and makes tuning easier, without sacrificing the solution quality.

The conclusions drawn from the experiments described in this paper will not necessarily apply to all
other implementations, and we expect these recommendations to be most useful when solving problems
closely related to the CVRP, the CMST, or the QAP. The relative merit of the move acceptance
criteria may also change based on the number of iterations that can be run. In our tests, a rather large
number of iterations was performed. In other contexts, this number may be limited, either because
the operators in the ALNS are time consuming themselves (Gullhav et al. 2017), because other time
consuming calculations are made between ALNS iterations (Schmid 2014), or because the ALNS is part
of a larger framework and has to run fast (Parragh and Schmid 2013).

(Burke, Gendreau, et al. 2013) considered ALNS to be a form of a hyper-heuristics. Different acceptance
criteria have been tested within the framework of hyper-heuristics. As an example, (Burak, Özcan, and
Korkmaz 2006) compared RW, HC, a version of HC with strict improvement required, GD, and a version
of SA. However, they did not reach any definite conclusions, and did not provide any evidence-based
recommendations for which acceptance criterion to prefer. The narrative literature review of (Burke,
Gendreau, et al. 2013), although summarising several other studies with comparisons of acceptance
criteria, also did not provide any conclusions about the relative merit of the different criteria.

For future research, our results indicate that it may be possible to obtain improved move acceptance
criteria by basing the decisions not only on the solution quality, but also on the distance between the
current and the candidate solution. To the authors knowledge, such a concept has not been explored
within the ALNS framework, but a similar idea can be found in skewed variable neighbourhood search
(Hansen and Mladenović 2001).

25

Acknowledgements

The authors thank two anonymous referees for their helpful comments that led to several improvements
of the original manuscript.

References
Beasley, J.E. (1990). “OR-Library: distributing test problems by electronic mail”. In: Journal of the

operational research society 41.11, pp. 1069–1072.
Birattari, M., Z. Yuan, P. Balaprakash, and T. Stützle (2010). “F-Race and Iterated F-Race: An

Overview”. In: Experimental methods for the analysis of optimization algorithms. Ed. by T. Bartz-
Beielstein, M. Chiarandini, L. Paquete, and M. Preuss. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 311–336.

Burak, B., E. Özcan, and E. E. Korkmaz (2006). “An experimental study on hyper-heuristics and exam
timetabling”. In: International Conference on the Practice and Theory of Automated Timetabling.
Berlin, Heidelberg: Springer, pp. 394–412.

Burkard, Rainer E, Stefan E Karisch, and Franz Rendl (1997). “QAPLIB –a quadratic assignment
problem library”. In: Journal of Global optimization 10.4, pp. 391–403.

Burke, E. K. and Y. Bykov (2008). “A late acceptance strategy in hill-climbing for exam timetabling
problems”. In: PATAT 2008 Conference, Montreal, Canada.

Burke, E. K. and Y. Bykov (2012). The late acceptance hill-climbing heuristic. Tech. rep. CSM-192.
University of Stirling, Tech. Rep, pp. 1–20.

Burke, E. K., M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu (2013). “Hyper-
heuristics: a survey of the state of the art”. In: Journal of the Operational Research Society 64.12,
pp. 1695–1724.

Christofides, N., A. Mingozzi, and P. Toth (1979). “The Vehicle Routing Problem”. In: Combinatorial
Optimization. Ed. by N. Christofides, A. Mingozzi, P. Toth, and C. Sandi. John Wiley & Sons, pp. 315–
338.

Connolly, D. (1992). “General purpose simulated annealing”. In: Journal of the Operational Research
Society 43.5, pp. 495–505.

Demir, E., T. Bektaş, and G. Laporte (2012). “An adaptive large neighborhood search heuristic for the
pollution-routing problem”. In: European Journal of Operational Research 223.2, pp. 346–359.

Dueck, G. (1993). “New optimization heuristics: the great deluge algorithm and the record-to-record
travel”. In: Journal of Computational Physics 104, pp. 86–92.

Dueck, G. and T. Scheuer (1990). “Threshold accepting: a general purpose optimization algorithm
appearing superior to simulated annealing”. In: Journal of Computational Physics 90, pp. 161–175.

Furini, F., E. Malaguti, and A. Santini (2017). “An exact algorithm for the Partition Coloring Problem”.
In: Submitted to Computers and Operations Resarch, pp. 1–17.

Glover, F. (2000). “Multi-Start and Strategic Oscillation Methods — Principles to Exploit Adaptive
Memory”. In: Computing Tools for Modeling, Optimization and Simulation. Ed. by M. Laguna and
J. L. G. Velarde. Vol. 12. Operations Research/Computer Science Interfaces Series. Boston, MA:
Springer, pp. 1–24.

Glover, F. and M. Laguna (1997). Tabu Search. Dordrecht: Kluwer Academic Publisher.
Golden, B. L., E. A. Wasil, J. P. Kelly, and I. M. Chao (1998). “The impact of metaheuristics on

solving the vehicle routing problem: algorithms, problem sets, and computational results”. In: Fleet
management and logistics. Ed. by T. Crainic and G. Laporte. Springer, pp. 33–56.

Grangier, P., M. Gendreau, F. Lehuédé, and L.-M. Rousseau (2016). “An adaptive large neighborhood
search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization”. In:
European Journal of Operational Research 254.1, pp. 80–91.

Gullhav, Anders, Jean-François Cordeau, Lars Magnus Hvattum, and Bjørn Nygreen (2017). “Adap-
tive large neighborhood search heuristics for multi-tier service deployment problems in clouds”. In:
European Journal of Operational Research 259, pp. 829–846.

26

Hansen, Pierre and Nenad Mladenović (2001). “Variable neighborhood search: principles and applica-
tions”. In: European Journal of Operational Research 130, pp. 449–467.

Hemmati, A. and L.M. Hvattum (2017). “Evaluating the importance of randomization in adaptive large
neighborhood search”. In: International Transactions in Operational Research 24, pp. 929–942.

Hemmelmayr, V.C, J.-F. Cordeau, and T.G. Crainic (2012). “An adaptive large neighborhood search
heuristic for two-echelon vehicle routing problems arising in city logistics”. In: Computers and opera-
tions research 39.12, pp. 3215–3228.

Hutter, F., H.H Hoos, K. Leyton-Brown, and T. Stützle (2009). “ParamILS: an automatic algorithm
configuration framework”. In: Journal of Artificial Intelligence Research 36.1, pp. 267–306.

Irnich, S., P. Toth, and D. Vigo (2014). “The family of vehicle routing problems”. In: Vehicle Routing:
Problems, Methods, and Applications. Ed. by P. Toth and D. Vigo. 2nd. SIAM. Chap. 1, pp. 1–33.

James, Tabitha, César Rego, and Fred Glover (2009). “Multistart tabu search and diversification strate-
gies for the quadratic assignment problem”. In: IEEE TRANSACTIONS ON SYSTEMS, Man, And
Cybernetics-part a: systems and humans 39.3, pp. 579–596.

Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi (1983). “Optimization by simulated annealing”. In: Science
220, pp. 671–680.

Landa-Silva, D. and J.H. Obit (2008). “Great deluge with non-linear decay rate for solving course
timetabling problems”. In: Intelligent Systems, 2008. IS’08. 4th International IEEE Conference. Vol. 1.
IEEE, pp. 8–11.

Laporte, G., S. Ropke, and T. Vidal (2014). “Heuristics for the Vehicle Routing Problem”. In: Vehicle
Routing: Problems, Methods, and Applications. Ed. by P. Toth and D. Vigo. 2nd. SIAM. Chap. 4,
pp. 87–116.

Lawler, Eugene L (1963). “The quadratic assignment problem”. In: Management science 9.4, pp. 586–
599.

Lei, H., G. Laporte, and B. Guo (2011). “The capacitated vehicle routing problem with stochastic
demands and time windows”. In: Computers and Operations Research 38.12, pp. 1775–1783.

Li, F., B. Golden, and E. Wasil (2005). “Very large-scale vehicle routing: new test problems, algorithms,
and results”. In: Computers and Operations Research 32.5, pp. 1165–1179.

Li, Yong, Panos Pardalos, and Mauricio Resende (1994). “A greedy randomized adaptive search pro-
cedure for the quadratic assignment problem”. In: Quadratic Assignment and Related Problems, DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science 16, pp. 237–261.

Merz, Peter and Bernd Freisleben (2000). “Fitness landscape analysis and memetic algorithms for the
quadratic assignment problem”. In: IEEE transactions on evolutionary computation 4.4, pp. 337–352.

Muller, L.F., S. Spoorendonk, and D. Pisinger (2012). “A hybrid adaptive large neighborhood search
heuristic for lot-sizing with setup times”. In: European Journal of Operational Research 218.3, pp. 614–
623.

Parragh, Sophie N and Verena Schmid (2013). “Hybrid column generation and large neighborhood
search for the dial-a-ride problem”. In: Computers and Operations Research 40, pp. 490–497.

Pisinger, D. and S. Ropke (2007). “A general heuristic for vehicle routing problems”. In: Computers and
Operations Research 34.8, pp. 2403–2435.

Potvin, J.-Y. and J.-M. Rousseau (1993). “A parallel route building algorithm for the vehicle routing
and scheduling problem with time windows”. In: European Journal of Operational Research 66.3,
pp. 331–340.

Ribeiro, G.M. and G. Laporte (2012). “An adaptive large neighborhood search heuristic for the cu-
mulative capacitated vehicle routing problem”. In: Computers & Operations Research 39.3, pp. 728–
735.

Rochat, Y. and É. D. Taillard (1995). “Probabilistic diversification and intensification in local search
for vehicle routing”. In: Journal of heuristics 1.1, pp. 147–167.

Ropke, S. and D. Pisinger (2006a). “A unified heuristic for a large class of vehicle routing problems with
backhauls”. In: European Journal of Operational Research 171.3, pp. 750–775.

Ropke, S. and D. Pisinger (2006b). “An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows”. In: Transportation Science 40.4, pp. 455–472.

Ropke, S. and A. Santini (2016). “Parallel Adaptive Large Neighbourhood Search”. In: in preparation.

27

Ruiz, R. and T. Stützle (2007). “A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem”. In: European Journal of Operational Research 177.3, pp. 2033–2049.

Schmid, Verena (2014). “Hybrid large neighborhood search for the bus rapid transit route design prob-
lem”. In: European Journal of Operational Research 238, pp. 427–437.

Schrimpf, G., J. Schneider, H. Stamm-Wilbrandt, and G. Dueck (2000). “Record breaking optimization
results using the ruin and recreate principle”. In: Journal of Computational Physics 159.2, pp. 139–
171.

Shaw, P. (1998). “Using constraint programming and local search methods to solve vehicle routing
problems”. In: CP-98 (Fourth International Conference on Principles and Practice of Constraint
Programming). Vol. 1520. Lecture Notes in Computer Science, pp. 417–431.

Stützle, Thomas (2006). “Iterated local search for the quadratic assignment problem”. In: European
Journal of Operational Research 174.3, pp. 1519–1539.

Uchoa, E., R. Fukasawa, J. Lysgaard, A. Pessoa, M. De Aragao, and D. Andrade (2008). “Robust branch-
cut-and-price for the capacitated minimum spanning tree problem over a large extended formulation”.
In: Mathematical Programming 112.2, pp. 443–472.

Uchoa, E., D. Pecin, A. Pessoa, M. Poggi, A. Subramanian, and T. Vidal (2014). New Benchmark
Instances for the Capacitated Vehicle Routing Problem. Tech. rep. UFF, Rio de Janeiro, Brazil. url:
http://www.optimization-online.org/DB_HTML/2014/10/4597.html.

28

http://www.optimization-online.org/DB_HTML/2014/10/4597.html

	Introduction
	The ALNS Framework
	Acceptance Criteria
	Hill Climbing
	Random Walk
	Late Acceptance Hill Climbing
	Threshold Acceptance
	Simulated Annealing
	Great Deluge
	Non-Linear Great Deluge
	Record-to-Record Travel
	Worse Accept
	Parameter space reduction

	Test Problems
	Capacitated Vehicle Routing Problem
	Capacitated Minimum Spanning Tree Problem
	Quadratic Assignment Problem

	ALNS applied to Test Problems
	ALNS for the CVRP
	Simple LNS for the CVRP
	CMST
	QAP
	Problem-specific parameters

	Parameter Tuning
	Results
	Conclusions

